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1 Introduction

A fundamental question when dealing with geospatial information is, given GPS trajectory data and a
road map, how can one determine which route on a map this trajectory corresponds to? This problem is
called the map-matching problem. Data-driven methods, such as hidden Markov models, are currently the
most prominent approach to the map-matching problem; however, they are inflexible changes in the data. In
contrast, a mathematical model will have the benefit of being more adaptable to changes in the data, such as
the extension from two to three-dimensional data or the inclusion of speed and angle data. Our project aims
to develop new solutions to the map-matching problem, favoring mathematical formulations, rather than a
data-driven models, that are stable under small perturbations in the road map and trajectory data. We
propose three novel methods: Wasserstein distance method, electrical force method, and harmonic oscillator
method. Each of these methods has an associated loss (objective) function whose minimum is the “matched”
map. The loss function of each of the three methods employs the mathematical object for which they are
named. We implement the Wasserstein distance method and electrical force method in Python and evaluate
their performance using both theoretical and numerical techniques.

2 Problem Summary and Statement

Here we will describe the mathematical formulation of our problem. We will adopt the problem statement
from definitions 2.1-2.4 in [CXHZ] with slight modifications. The geospatial data points will be modeled by
a trajectory, see Definition 2.1, and map data will be encapsulated by a road network Definition 2.2.

Let us fix N ∈ N, N ≥ 2, (but almost everywhere we consider the case N = 2).

Definition 2.1 (Trajectory). A trajectory Tr is a sequence p = (p1, p2, . . . , pn) of points in RN equipped
with

• a sequence, t(p) = (t1, . . . , tn), of positive numbers satisfying t1 < t2 < · · · < tn, called the timestamp
of p,

• a sequence, spd(p) = (spd1, . . . , spdn), of positive numbers called the speed of p (optional),

• a sequence, u(p) = (u1, . . . , un), of unit vectors in RN , called the direction of p (optional).

Definition 2.2 (Road Network). A road network (also known as map) is a directed graph G = (V,E)
consists of the set V (resp. E) of vertices (resp. edges) with an embedding ϕ : |G| → RN of the geometric
realization |G| of G. We will identify G and the image ϕ(|G|) by ϕ as long as there is no confusion.

Definition 2.3 (Local Road Network). A local road network is a directed connected subgraph of G = (V,E).

Definition 2.4 (Route). A route r on a road network G = (V,E) is a sequence of connected edges
(e1, e2, . . . , en) ⊂ E, i.e. the head of ei coincides with the tail of ei+1 for each i = 1, 2, . . . , n − 1. Let
R denote the set of all routes.

Definition 2.5 (Candidate Routes). For the local road network graph as H of the road network G, we define

CRH = CR := {routes on a local road network graph H},

Definition 2.6 (Map-Matching). Given a road network G = (V,E) and a trajectory Tr, the map-matching,
MRG(Tr), is the route that is the argument of the minimum of some function L : CR → R+, called the loss
function.

In the map-matching problem, the trajectory and road network are given as input data. Preprocessing
can narrow the scope of the problem to compare candidate routes on the local road network. The main
goal of this project is to find a suitable loss function such that MRG(Tr) is the route that is the minimal
distance from the actual route traveled by a vehicle or pedestrian taken concerning a chosen metric (see § 7.4
for details on chosen metrics). A flow chart of our approach to the map-matching problem can be seen in
Figure 2.1.

2



Page 3 of 34 g-RIPS Sendai 2022, Mitsubishi-A

Road network and trajectory Pre-processing

Candidate routes

Minimize loss function

Optimal route

Figure 2.1: Steps of the map-matching process

3 Background

In this section, we will review three existing map-matching methods, the point-to-point method, the
point-to-curve method, and the Hidden Markov Model method, and evaluate their strengths and weaknesses.
Surveys of these and many other existing map-matching algorithms are available in [CXHZ, QON].

3.1 Geometric Model

Descriptions of several geometric methods including point-to-point, point-to-curve, and curve-to-curve
methods can be found in [BK]. The simplest geometric map-matching algorithm is the point-to-point method
(for this method only, consider a route to instead be a sequence of vertices in the road network). Suppose
there are n trajectory points, pi with 1 ≤ i ≤ n and m vertices vj with 1 ≤ j ≤ m. The procedure for the
point-to-point method is given in [BK] to be

1. For each trajectory point, pi, compute the distance from pi to v for each v ∈ V ,

2. Find v∗ ∈ V such that the euclidean distance between pi and v∗ is minimal.

3. Let the route found be the sequence of the v∗’s found for each pi, 1 ≤ i ≤ n.

Similarly, the procedure for the point-to-curve method is

1. Project each trajectory point onto each edge in the road network,

2. Compute the distance between each trajectory point and all of its projections,

3. Determine which edge minimizes this distance for each trajectory point

4. Let the route found be the sequence of the edges found in step 3.

Geometric methods are easily implemented and have low time complexity [BK]. Techniques such as
creating Voronoi diagrams can be used to further decrease computational time. For example, one can partition
a subset of R2 based on which points are closer to a given vertex on the graph than all others. This
partition could be computed once and used to map-match different trajectories on the same road network.
See Figure 3.2 for an example of a Voronoi diagram of a road network. The black lines and circles in the
figure correspond to the road network while the blue lines partition the space into regions whose points are
closest to the given vertex.

3
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However, these geometric methods, can be sensitive to measurement errors and are highly dependent on
the network structure [BK]. Bernstein and Kornhauser presented the example in Figure 3.3 to demonstrate
this. Suppose the sequence of red points labeled x1, x2, x3 is our trajectory and the lines and circles represent
the vertices and edges of the underlying road network. Clearly, the trajectory appears to be closest to the
path from vertex v4 to v5, but the closest node to trajectory point x2 is v2.

Figure 3.2: Voronoi Example

v1 v2 v3

x1
x2 x3

v4 v5

Figure 3.3: Geometric Method Error

3.2 Hidden Markov Model

The use of Hidden Markov Models (HMM) is one of the most popular approaches to the map-matching
problem [CXHZ]. An open source example of a map-matching algorithm using HMM is GraphHopper [GH].

y1 y2 · · · yN

x1 x2 · · · xN

Figure 3.4: Hidden Markov Model (HMM)

A Markov chain is a probabilistic model for sequential events subject to the condition that the probability
of a given event depends on the on the previous event alone, i.e. it is a sequence of random variable z1, . . . , zn
satisfying

p(zn|z1, . . . , zn−1) = p(zn|zn−1).

A Hidden Markov Model assumes that observations, x1, x2, . . . , xn are generated by a Markov chain of
unobserved states y1, . . . , yn, seen in Figure 3.4. The joint probability of the observed and unobserved states
is

p(x1, x2, . . . , xn, y1, . . . , yn) = p(y1)p(x1|y1)
n∏

i=2

p(yi|yi−1)p(xi|yi).

The probability p(xi|yi) is called the emission probability, p(yi|yi−1) is the transition probability, and p(y1)
is the initial distribution. If there are a finite number of states each xi and yi can take on, then we can form
emission, transition, and initial distribution matrices. Each probability is a parameter in our model. Once
these parameters are established, one of several existing algorithms can be used to compute the probabilities
of some sequences of yi values occurring given the sequence of observed xi’s. This method can be used to
find the sequence of events with the highest probability given a sequence of observations.

4
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Example 3.1. A simple application of an HMM can be used to determine how busy a teacher is, given
the observed lecture quality. Take the observed states x1, . . . , xn ∈ {good, bad} to be the quality of the
lecture on days 1, . . . , n, and the unobserved states to be y1, . . . , yn ∈ {busy, not busy}. In this example, the
emission matrix, A, and transition matrix, B, are given below based on the quantities decided in Figure 3.5:

A =

[
.7 .3
.6 .4

]
, B =

[
.2 .8
.9 .1

]
.

Busy Not Busy

Good Bad

.7

.6

.3

.4

.2 .8 .9 .1

Figure 3.5: Transition and Emission probabilities for Example 3.1.

3.2.1 Application to Map-Matching

From the survey from Chao [CXHZ], HMM models for map-matching have the following setup. The
observed quantities in the HMM for the map-matching problem are the sequence of geospatial data points
and the hidden variables are the possible edges on the road network. The transition probabilities describe
the likelihood of the route containing some edge, given the previous edge, but the emission probabilities
describe the probability of observing a trajectory point given some edge in the road network. The choice of
these parameters differentiates existing HMM models for map-matching. After the parameters are chosen,
one can compute the route in the road network with the highest probability given the observed trajectory.
Unfortunately, this approach to map-matching is limited, because a two-dimensional hidden Markov model
for map-matching cannot be extended to include three-dimensional model or be changed to include speed
information without training on the new data altogether.

4 Mathematical formulation for our Approach

We introduce the two methods each employing one of the following mathematical tool and physical
concept:

• Wasserstein Distance,

• Coulomb forces and harmonic oscillator.

We will give our situation settings used in Section 5 and Section 6, with mathematical formulations.
First, we explain how to handle the GPS error. Preprocessing can reduce the effect of GPS error, but

it cannot eliminate it. Although the average value of the GPS error can be obtained, the value of the error
at each trajectory point is often not known. However, for simplicity, we impose and discuss here a rather
strong setting in which the GPS error at each point is obtained. The error Err is used to mean that the true
location is likely to exist within radius Err of the location where the trajectory was observed. For simplicity,
we handle the error Err in the sense that there is always a true position within a radius Err. In addition,
in areas with low signal reception, such as skyscrapers, GPS data is less reliable, so speed and direction

5
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information is obtained from the IMU1 on the mover2. In this case, the GPS data has a large error rate,
but the accuracy of the speed and direction information remains high. We make the following assumptions
taking these into account.

Assumption 4.1 (The GPS error).
• Set the GPS error as Err : p → R≥0. Then, suppose that the spherically-symmetric probability measure
γp is given such that supp γp = B

(
p;Err(p)

)
:=
{
v ∈ RN

∣∣ dRN (v, p) ≤ Err(p)
}
. We assume that p is

truly located at v with (conditional) probability γp(v) (see Figure 4.6).

• Suppose that there are NO errors for both the speed and direction information.

Remark 4.2.
• On spherically-symmetric probability measure: For example, consider the Gaussian measure
parameterized so that the total measure is close enough to 1 in the bounded domain B

(
p;Err(p)

)
. One

can then cut off the measure by B
(
p;Err(p)

)
and normalize it so that the total measure is 1.

• Validity of the error: Notice that for any p ∈ p, there exists e ∈ E such that B
(
p;Err(p)

)
∩ e ̸= ∅.

p
vp1

vp2

Err(p)

supp γp

Figure 4.6: supp γp which represents the true region of existence of p. The mover exists at vpi
with probability

γp(pi) for i = 1, 2. then γp(p) > γp(vp1) > γp(vp2) holds.

If we try to handle GPS errors more rigorously, we face the following problem.

Problem 4.3 (Renormalization of (γp)p∈p). Although in Remark 4.2, we defined supp γp as a ball in RN

for each p ∈ p, this is unreasonable, given that the true location of the mover cannot exist outside of the
road (see Figure 4.7). Hence, supp γp should be restricted to supp γp ∩ E (⊂ RN ) and renormalized so
that the total probability of being there is 1. However, since we do not consider the width of the road in
our setting, a high-level mathematical theory such as geometric measure theory would be needed to justify
such a renormalization. We, therefore, used a simplified setup, as in Remark 4.2, in this project. This
renormalization will be an important procedure when considering the width of the road (see Figure 4.8).

p

e1

e2

e3

supp γp

Figure 4.7: The situation where supp γp and
edges e1, e2, e3 are intersecting. Since the
width of the edges is not considered in our
setup, the true position of p is the whole
supp γp.

p

e1

e2

e3

supp γp

Figure 4.8: The renormalized supp γp by re-
stricting it to where the mover can be located
in supp γp. This renormalization will be neces-
sary especially when considering the width of
the road.

1Inertial Measurement Unit
2see https://www.onosokki.co.jp/HP-WK/products/keisoku/vehicle/lc8_principle.htm,

https://www.digikey.jp/ja/articles/use-inertial-measurement-units-to-enable-precision-agriculture (both articles
are in Japanese).
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It is unreasonable to use RN -distance dRN in quantifying how far away a trajectory point is from the edge
due to GPS error. To address this, we introduce a distance taking into account the GPS error between a
trajectory point and an edge.

Definition 4.4 (The “distance” with error between p ∈ p and e ∈ E). We define the “distance” with error
dErr between p ∈ p (with errors) and e ∈ E (without errors) as

dErr(p, e) :=

∫
vp∈B

(
p;Err(p)

) dRN (vp, e) dγp(vp).

Remark 4.5. Note that this dErr is a quantity that describes “how far is it p ∈ p to e ∈ E can be considered
to be” and not used as a “distance function”.

Observation 4.6. If p ∈ e, i.e. dRN (p, e) = 0, then dErr(p, e) = 0. It is only in this case that dErr(p, e) = 0.

5 Wasserstein Distance Method

In this section, we explain the method using Wasserstein distance which comes from optimal transport
theory. We will briefly describe discrete optimal transport theory (see also [FG, Sa, Vi], etc.).

5.1 A brief introduction of (discrete) optimal transport theory

Consider transporting sand from a sand pile at x1, . . . , xn to a hole at y1, . . . , ym. Note that n,m ∈ N
are independent. Suppose that each sand pile x1, . . . , xn has µ(x1), . . . , µ(xn) mass of sand, respectively, and
each hole y1, . . . , ym can contain ν(y1), . . . , ν(ym) mass of sand, respectively. Moreover, we assume that the
cost of transporting from a sand pile of xi to a hole of yj is linearly dependent on their distance d(xi, yj): it
costs d(xi, yj)π(xi, yj) to transport sand of mass π(xi, yj) from the sand pile at xi to the hole at yj . Since
the sum of the mass of sand transported from each xi equals the sum of the mass of sand placed in each hole
yj , the following holds:

n∑
i=1

µ(xi) =

m∑
j=1

ν(yj). (5.1)

For simplicity, we normalize both sides of (5.1) to be 1. Then, µ, ν can be regarded as probability measures,
respectively. Optimal transport problem is the problem such minimizing total cost for transporting. In other
words, we consider the following the minimizing problem.

minimize

n∑
i=1

m∑
j=1

d(xi, yj)π(xi, yj)

subject to π(xi, yj) ≥ 0 for i = 1, 2, . . . , n, j = 1, 2, . . . ,m,

µ(xi) =

m∑
j=1

π(xi, yj) for i = 1, 2, . . . , n,

µ(yj) =

n∑
i=1

π(xi, yj) for j = 1, 2, . . . ,m.

(5.2)

We call the map π that satisfies these conditions the optimal transport plan or the coupling of µ, ν. Π(µ, ν)
denotes a set of all couplings of µ, ν.

Definition 5.1 ((L1-)Wasserstein distance). For probability measures µ, ν with suppµ = {x1, . . . , xn} and
supp ν = {y1, . . . , ym}, we define

W1(µ, ν) := inf
π∈Π(µ,ν)

n∑
i=1

m∑
j=1

d(xi, yj)π(xi, yj). (5.3)

Under the appropriate conditions, W1 is a distance function on the probability measure space. We call this
(L1-)Wasserstein distance between probability measures µ and ν.

7
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A probability measure space often contains geometrical information about its underlying space. Therefore,
it is useful to analyze the probability measure space using Wasserstein distance to understand the geometrical
structure of its underlying space.

Remark 5.2. Although Π(µ, ν) is an infinite set since the mass of sand transported can be continuously
varied, this is known to be a bounded closed, i.e. compact set. Hence, the right-hand side of (5.3) attains
the minimum value.

5.2 The case in which input data is only the trajectory coordinates and timestamps

First, we introduce probability measures that are determined only from the coordinate information of the
trajectory points.

Definition 5.3 (Probability measures associated with the trajectory and candidate route). Let G = (V,E)
be the local road network graph and m ∈ N be large enough. We divide the candidate route A ∈ CRG into
m + 1 equal parts and let a1, . . . , am denote the m threshold points, then set V (A,m) := {a1, a2, . . . , am}.
Then, we define probability measures µp and νA,m = νA associated with the trajectory p and A ∈ CRG,
respectively, as follows:

µp :=
1

n

∑
p∈p

δp, νA,m = νA :=
1

m

∑
a∈V (A,m)

δa.

Remark 5.4.
• Independence of n and m: The number of trajectory points n and the number of divisions m are
independent. On the other hand, for each candidate route A ∈ CR to be compared, the number of
divisions m is the same: for any A,B ∈ CR, # supp νA = #supp νB .

• Size of m: Although the threshold points a1, . . . , am is placed in the image of a discrete approximation
of the route A, we still do not know exactly what the minimum magnitude of m should be (see also
Problem 5.18).

• On the definition of µp: Considering the GPS error, γp should be adopted as the definition of µp

instead of δp at each p ∈ p, but for simplicity, we defined µp in this way (see also § 5.4).

Assumption 5.5. In the following, unless otherwise noted, we proceed with the discussion in this section
assuming that the dividing point of the candidate route is m.

Examine µp and ν, i.e. νA,m = νA and νB,m = νB in the following example as the simplest case where is
it is difficult to determine the true route.

Example 5.6 (Square model). Consider the case where the edges of the local road network graph (⊂ R2)
form a square, and suppose that the trajectory points p1, . . . , pn is observed near the diagonal as shown in
Figure 5.9. Although the trajectory points are drawn in a zigzag pattern in Figure 5.9, our approach can
be used for anything near the diagonal line. We assume that we know from the information of timestamps
that the trajectory began near v1 and ended near v4. It is difficult to determine from this trajectory along
whether (v1, v2) → (v2, v4) (we call this route A) or (v1, v3) → (v3, v4) (we call this route B) is the true route
traveled. Therefore, we propose the Wasserstein method, which is the method of route determination based
on the optimal transport theory described in § 5.1.

We will find µp and νA,m and νB,m in this situation, respectively. From the definition, µp can be written
directly as

µp =
1

n

n∑
i=1

δpi
.

Hence, we put weights of 1/n on each point p ∈ p as shown in Figure 5.10. To find νA,m and νB,m, we first
divide the route A and B into m+ 1 equal parts. These are obtained by putting weight 1/m on each of the
m threshold points in this way, respectively (see also Figure 5.11 and Figure 5.12):

νA,m = νA =
1

m

m∑
j=1

δaj
, νB,m = νB =

1

m

m∑
j=1

δbj .

8
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p1

p2
p3

pn−1

pn

v1 v2

v3 v4

Route ARoute B

Figure 5.9: The case where the trajectory
points p1, . . . , pn is observed near the diagonal
of a square road network.

1/n

1/n
1/n

1/n

1/n

v1 v2

v3 v4

Figure 5.10: A probability measure µp on the
trajectory points. The weight 1/n is placed on
the trajectory points p1, . . . , pn respectively.

a1 a2

am−1

am

v1 v2

v3 v4

Route A

Figure 5.11: A probability measure νA,m as-
sociated with the route A. The edges (v1, v2)
and (v2, v4) forming the route A are divided
into m + 1 equal parts, each with 1/m weight
on its threshold points a1, . . . , am.

b1

b2

bm−1 bm

v1 v2

v3 v4

Route B

Figure 5.12: A probability measure νB,m as-
sociated with the route B. The edges (v1, v3)
and (v3, v4) forming the route B are divided
into m + 1 equal parts, each with 1/m weight
on its threshold points b1, . . . , bm.

Remark 5.7. If m is odd and can be expressed as m = 2ℓ+ 1, then the threshold points aℓ and bℓ coincide
with the nodes v2 and v3, respectively.

If input data is only the trajectory coordinates and timestamps, then the true route is determined by
Wasserstein distance between µp and ν.

Remark 5.8. Although φm(A) take finite values for any A ∈ CR and any m ∈ N, they might not converge
as m → ∞. Although we would conjecture that they converge as m approaches infinity in an even or odd
state, respectively, their values may be different, i.e. their values may oscillate as m → ∞.

Remark 5.9. Even if all trajectory points are on the candidate route A ∈ CR, W1(µp, νA,m) ̸= 0 holds in
general. Therefore, we should apply this method only when it is non-trivial which route was passed such as
the trajectory points are clustered near the diagonal.

Remark 5.10. Note that the trajectory p is a finite set, and a route is a curve, that is, a set of infinite points.
The point-to-curve method projects from the trajectory point to the edges that compose the candidate route,
so it is a “point-to-(point on curve)” iteration. In contrast, our method transports weights from trajectory
p to a candidate route A ∈ CR, in other words, it is a “trajectory-to-route” process.

9
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•

•

•

• • •

p1

p2

p3

p4 p5 p6

v1 v2

v3 v4

Route ARoute B

Figure 5.13: A local road network graph G. The trajectory is close to the route A, while the unit vector is
similar to the shape of the route B. We should judge the route B in such a case.

5.3 Incorporating speed and direction information

In this subsubsection, we propose a method that takes speed and direction information into account.

5.3.1 Our motivation

Consider an extreme example such as Figure 5.13. Suppose that each pi is located between edges v1v3
and v2v4 for i = 1, 2, 3, and each pj is located between edges v1v2 and v3v4 for j = 4, 5, 6. Consider µp, νA
and νB in this case, and determine the route from only location information using the method described in
§ 5.2. From the situation,

W1(µp, νA) > W1(µp, νB) (5.4)

holds and We would have to select the route A. In this case, however, the GPS data is probably noisy due to
skyscrapers and other factors, making the location data unreliable. Also, since direction should have a small
margin of error even in such cases, we would like to determine the route from the direction information as
much as possible. Thus, in this case, the true route would be the route B.

5.3.2 Our strategy

The first idea is to use speed and direction information to modify the transport method, i.e., W1 distance.
In this case, however, we would modify the optimal transport plan, not the loss function for W1 distance.
Although the modification itself may not be difficult, the modified W1 distance that is constructed as a result
is likely to be very hard to handle, in particular, the triangle inequality may no longer hold. Then, we modify
the probability measures µp and ν using speed and direction information. The following is a brief description
of the flow of the method.

1. Place a weight on each threshold point a ∈ V (A,m) that takes speed and direction information into
account. This weight is separated into two parts: one wA which is uniformly placed on each route and
another wp,A which is affected by speed and direction.

2. According to the weights, the local road network graph is updated to aweighted graph. This weighted
graph is a graph that is defined for each route A and we denote it as GA.

10
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3. Perturb µp and νA on the weighted graph GA by ε, where 0 < ε ≪ 1. We denote the probability
measures obtained in this way as µε

p and νεA, respectively. We similarly define νεB for B ∈ CR.

4. Then, comparing the values

W1(µ
ε
p, ν

ε
A)

W1(µp, νA)
and

W1(µ
ε
p, ν

ε
B)

W1(µp, νB)
,

determine the route with the smallest value to be the true route. In other words, we adopt the value

W1(µ
ε
p, ν

ε
A)

W1(µp, νA)
(5.5)

as the quantity for route determination.

Remark 5.11 (The quantity to be used to determine route). Note that since 0 < ε ≪ 1, W1(µ
ε
p, ν

ε
A)

and W1(µ
ε
p, ν

ε
B) are not yet valid quantities for determining route because of the strong influence of location

information. There is also a technique to make this ε larger, but in that case, the question is how to proportion
it to the location information. Therefore, we adopted quantities normalized by W1(µp, νA) for 0 < ε ≪ 1.
This quantity (5.5) is very useful in Riemannian geometry on graphs. See Appendix A for more details.

5.3.3 The definition of weights including speed and direction information

We will put additional weighted edges in this vertex set V . Our method quantifies the distance between
p and each route separately. Therefore, it is necessary to consider two types of weighted edges, since each of
them is evaluated from a different point of view.

The first type is a “natural” weight in the sense that it decides which routes to consider.

Definition 5.12 (Natural weights for each route). For each trajectory point p ∈ p and each candidate route
A ∈ CR, we define wp,A, wp,B : RN → {0, 1} as

wp,A(v) :=

{
1 (v ∈ V (A)),

0 (otherwise),

V (A) is the threshold points set of A ∈ CR.

Next, we introduce a weight including speed and direction information. This weight is a quantity that
depends on the input data at each trajectory point p ∈ p, and is commonly defined independently of which
route is considered.

We will make some preparations to define this weight.

Definition 5.13 (Weights depending on speed and direction information).

• For each p ∈ p and e ∈ E, we define

Cp,e := spd(p) · ⟨up, e⟩
exp

(
dErr(p, e)

) ,
where e is the unit vector parallel to e for each e ∈ E. Then, we define Cp :=

∑
e∈E Cp,e.

• With the above preparations, we define wp : RN → R≥0 for each p ∈ p as follows:

wp(v) :=
∑
e∈E;
e∋v

Cp,e∑
e∈E Cp,e

· 1

#
(
e ∩ V (A)

) .
Observation 5.14 (Weighted local road network graph). The weight introduced in Definition 5.12 and
Definition 5.13 modifies the local road network G = (V,E) to the weighted graph G = (V,E,w). Notice
that the weights of each eA ∈ E(A) are all zero, so these edges vanished. Moreover, note that the

11
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vertex set VA of GA determined by the weights wp,A and wp is VA = p ∪ V (A). In order to consider the
perturbation (of the probability measure µp associated with the trajectory) at G = (V,E,w), let us now
calculate the weighted degree dp,A,m = dp,A of each p ∈ p, which can be considered in #CR types depending
on the different weights wp,A for each A ∈ CR, but the values are the same:

dp,A :=
∑
v∈V

{
wp,A(v) + wp(v)

}
=

 ∑
v∈V (A)

1

+
∑

v∈V (A)

∑
e∈E;
e∋v

Cp,e∑
e∈E Cp,e

· 1

#
(
e ∩ V (A)

) = m+ 1.

This right-hand side does not depend on A ∈ CR. For any A ∈ CR, we have dp,A = m+ 1.

Finally, we get to the definition of ε-perturbations µε
p,· and νε· .

Definition 5.15 (The ε-perturbations of the probability measures associated with the trajectory and routes).
For each ε ∈ [0, 1], p ∈ p, candidate route A ∈ CR and a ∈ V (A,m), we define as follows:

µε
p,A(v) :=

{
1− ε (v = p),

ε · wp,A(x)+wp(x)
dp,A

(v ∈ V (A,m)),
νεa(v) :=


1− ε (v = a),

ε · 1
n (v ∈ p),

0 (otherwise),

Next, we define the ε-perturbations of the probability measures associated with the trajectory and routes as
follows, respectively:

µε
p,A :=

1

n

∑
p∈p

µε
p,A, νεA :=

1

m

∑
a∈V (A,m)

νεa.

Remark 5.16. νεA and νεA can be simply expressed by the definition as

νεA(v) =

{
1−ε
m (v ∈ V (A,m)),
ε
n (v ∈ p).

Observation 5.17. It is clear from the definition that µ0
p,A = µp = µ0

p,B , ν
0
A = νA and ν0B = νB hold.

5.3.4 Briefly explanation of route determination in Figure 5.13 using Wasserstein method

Consider Figure 5.13 again and use the Wasserstein method to determine the route.
First, we find each C. For simplicity, suppose that spd(p), Err(p) are constant at each p ∈ p (spd(p) =: S),

vec(p(i)) ⊥ −−→v1v3 for i = 1, 2, 3 and vec(p(j)) ⊥ −−→v1v2 for j = 4, 5, 6. Then, we obtain for i = 1, 2, 3

Cpi,v1v3 = Cpi,v2v4 = spd(pi) ·
⟨upi , e⟩

exp
(
dErr(p, e)

) =
S

exp
(
dErr(p, e)

) , Cpi,v1v2 = Cpi,v3v4 = 0,

where exp
(
dErr(p, e)

)
:= exp

(
dErr(p, v1v3)

)
= exp

(
dErr(p, v2v4)

)
. We also obtain for j = 4, 5, 6

Cpj ,v1v3 = Cpj ,v2v4 = 0, Cpj ,v1v2 = Cpj ,v3v4 = spd(pj) ·
⟨upj

, e⟩
exp

(
dErr(p, e)

) =
S

exp
(
dErr(p, e)

) ,
where exp

(
dErr(p, e)

)
:= exp

(
dErr(p, v1v2)

)
= exp

(
dErr(p, v3v4)

)
. Then, we have for i = 1, 2, 3 and j = 4, 5, 6

Cpi,v1v3

Cpi

=
1

2
=

Cpi,v2v4

Cpi

,
Cpi,v1v2

Cpi

= 0 =
Cpi,v3v4

Cpi

,

Cpj ,v1v3

Cpj

= 0 =
Cpj ,v2v4

Cpj

,
Cpj ,v1v2

Cpj

=
1

2
=

Cpj ,v3v4

Cpj

.

Suppose that we divide the routes A and B into m = 2ℓ+1 equal parts. Then, the weight wp(·) is distributed
as follows:

12
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wp1(v) = wp2(v) = wp3(v) =

{
1
2 · 1

ℓ+1 (v = aℓ+1, . . . , a2ℓ+1, b1, . . . , bℓ+1),

0 (otherwise),

wp4(v) = wp5(v) = wp6(v) =

{
1
2 · 1

ℓ+1 (v = a1, . . . , aℓ+1, bℓ+1, . . . , b2ℓ+1),

0 (otherwise).

Then, it holds that µε
p,A = µε

p,B for any ε ∈ [0, 1]. The supports of probability measures µp, νA, νB , µ
ε
p,A(=

µε
p,B), ν

ε
A and νεB are illustrated in Figure 5.14, Figure 5.15, Figure 5.16,Figure 5.17, Figure 5.18 and Fig-

ure 5.19, respectively. Let α be α := 1− ε.

Figure 5.14: suppµp. • =
1/6.

Figure 5.15: supp νA. • =
1/m.

Figure 5.16: supp νB . • =
1/m.

Figure 5.17: suppµε
p,A • =

α/6, • = ε/4(ℓ + 1) and •
= ε/2(ℓ+ 1).

Figure 5.18: supp νεA. • =
ε/6 and • = α/m.

Figure 5.19: supp νεB . • =
ε/6 and • = α/m.

Now note that the value (5.5) can be decomposed as follows:

W1(µ
ε
p,A, ν

ε
A)

W1(µp, νA)
=

A(ε) + δ(ε)

W1(µp, νA)
=

A(ε)

W1(µp, νA)
+

δ(ε)

W1(µp, νA)
, (5.6)

W1(µ
ε
p,B , ν

ε
B)

W1(µp, νB)
=

B(ε) + δ(ε)

W1(µp, νB)
=

B(ε)

W1(µp, νB)
+

δ(ε)

W1(µp, νB)
, (5.7)

where A(ε) and B(ε) are the transport costs from the trajectory to each route, respectively, and δ(ε) is
the transport cost from one route to the other. Note that δ(ε) is a common quantity in both transports.
Moreover, we can see that

A(ε)

W1(µp, νA)
≒

B(ε)

W1(µp, νB)

13
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is valid when ε is close enough to 0. Then, the magnitude relationship between (5.6) and (5.7) is determined
by the magnitude relationship between W1(µp, νA) and W1(µp, νB).

Hence, since (5.4) holds, we obtain

W1(µ
ε
p,A, ν

ε
A)

W1(µp, νA)
>

W1(µ
ε
p,B , ν

ε
B)

W1(µp, νB)
. (5.8)

Therefore, the Wasserstein method outputs the route B as the true route in a situation like Figure 5.13.

5.4 Future problems

We list the problems that should be addressed to develop the Wasserstein method in the future in the
following aspects:

• the definition of a probability measure associated with the trajectory (Definition 5.3),

• how to distribute weights by speed and direction information (Definition 5.13),

• the property to be shown for implementation:

– the case where determination is based only on location information (§ 5.2),

– the case where determination is based on speed and direction information as well (§ 5.3).

The definition of a probability measure associated with the trajectory (Definition 5.3)

Inspired by Definition A.6, we defined the probability measure µp associated with the trajectory as
Definition 5.3, but it may be useful to make the definition correspond to (γp)p∈p, which represents the range
of GPS error see also § A.1. This is natural considering the original meaning of “coarse Ricci curvature”,
which was introduced in [Ol], as defined on metric measure spaces. However, the concrete calculations would
be very complicated beyond our setup.

How to distribute weights by speed and direction information (Definition 5.13)

After all, the distribution of weights in Definition 5.13 is the most important point in the map-matching
problem. The weight in Definition 5.13 was simply assigned equally to all the edges of the local road network,
but I think it should be more sophisticated. For example, the weight value to be placed on the threshold
point of each edge can be different depending on the location of each p ∈ p and the spd(p).

The property to be shown for implementation

This is a common problem for both § 5.2 and § 5.3 in the sense that the goal is to derive the property
corresponding to Theorem A.5 in each setting. However, the properties to be shown in each situation are
somewhat different and will be explained separately.

The case where determination is based only on location information (§ 5.2)

For each candidate route A ∈ CR, as m is increased, supp νA,m approaches to the route A respectively.
Our idea is that we can determine which route is closer to the trajectory points p by computing W1(µp, νA,m)
for a sufficiently large m ∈ N. Then, we need to show the following.

Problem 5.18. For any A,B ∈ CR, there exists a m̃ ∈ N such that W1(µp, νA,m) − W1(µp, νB,m) is a
monotone function for any m ∈ N such that m ≥ m̃.

We can determine which route the trajectory points is closer to by checking the sign of W1(µp, νA,m) −
W1(µp, νB,m) for a sufficiently large m if we can prove Problem 5.18. Hence, if W1(µp, νA,m) < W1(µp, νB,m)
holds, then we can conclude that the trajectory points is closer the route A, which is the true route.

Remark 5.19. Although W1(µp, νA,m) take finite values for any A ∈ CR and any m ∈ N, they might not
converge as m → ∞. Although we would conjecture that they converge as m approaches infinity in an even
or odd state, respectively, their values may be different, i.e. their values may oscillate as m → ∞.
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The case where determination is based on speed and direction information as well (§ 5.3)

We could not show the piecewise linearity like Theorem A.5 in LLY–Ricci curvature yet within the period
of this project (see also Remark A.12):

Problem 5.20. Is the function ε 7→ κ(ε;p, A) piecewise linear on [0, 1]?

This is due to the complexity of our setting, and I conjecture κ(ε;p, A) will almost certainly be piecewise
linear on ε ∈ [0, 1] for each candidate route A ∈ CR. However, the number of segments will depend on n and
m, not 3. Therefore, we will calculate κ(ε;p, A)/ε by assigning a value sufficiently close to 0 to ε. It would
have been much more useful in terms of implementation of this first linear part ε ∈ [0, ε̃(n,m)] could have
been derived.

6 Methods by Physical Analogy

We introduce the “electric method” and the “harmonic oscillator method” as a way to define our new
loss function.

6.1 “Electric” Method

First, we propose a method to measure the closeness of trajectory points and routes by the interaction
of Coulomb forces. In this method, we consider not only trajectory points, but also the entire polyline
connecting the trajectory points, and compare it with the entirety of each route. That is, we consider a
“trajectory segments-to-route method.”

6.1.1 Details of method

We describe the specific procedure of this “electric” method. The abstract of the step is as follows:

1. Connecting trajectory points with segments and parameterizing them and each candidate route.

2. Giving the polyline and routes opposing electrical charge.

3. Calculating electric forces between the polyline and routes.

4. Choosing “the closest route” as the true route.

First, we connect trajectory points with segments and parametrize the candidate route. We assume that
this polyline can move but the road map is fixed.

Definition 6.1 (polyline). We define the polyline lp : [0, 1] → RN associated with a trajectory p = (pi)0≤i≤n

by

lp(t) := (1− t)pi + tpi+1

(
i

n
≤ t ≤ i+ 1

n

)
. (6.1)

Definition 6.2 (parameterized route). Let r = (e1, . . . , em) be a route. We define the parametrised edge
ei : [0, 1] → RN by parametrising |ei| by arclength parameter and the parametrised route r(t) : [0,m] → RN

by union of the parametrised route ei.

Remark 6.3. We assume that route is piecewise smooth and regular, thus arclength parameter exists on
each interval.

Next, we give the candidate routes and our trajectory polyline opposing electrical charges. For simplicity,
we assume that electric charge density is uniform.

Definition 6.4 (electric charge). We define electric charge density as uniform probability density function
on the polyline ρpolyline : [0, 1] → R and on the candidate route ρroute : [0, 1] → R.
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Then, all of the candidate routes exert an electric force on our polyline. The magnitude of Coulomb forces
is represented as follows: ∫

[0,m]

∫
[0,1]

(l(t)− r(s)) · ˙l(t)

dErr(l(t), r(s))2
ρpolyline(t)ρroute(s) dtds. (6.2)

We choose the route which exerts the most force on the polyline as the true route.

p1

p2

p3 p4

Route A

Route B

Figure 6.20: Given trajectory

points and candidate routes.

Figure 6.21: Connecting tra-

jectory points and giving op-

posing electric charges. The

red colored area have positive

charge and the blue colored area

have negative charge.

Figure 6.22: The polyline

moving to “closer” route by

Coulomb forces.

6.1.2 Observations

• Strength:
By using this method, we can consider both the whole polyline and the entirety of each route all at
once, because the electric forces are determined by the whole body of each.

• Problems: We have two problems with this “electric” method;

– The theories about static electrodynamics and rigid body dynamics do not tell us how to treat
speed and direction data.

– Coulomb forces are proportional to square inverse of distance, so when the polyline intersects with
the route they diverge. We can avoid divergence by adding a constant to the denominator. But,
if a constant is small, the effects of intersection points are still dominant. Thus it is difficult to
choose the correct route which has fewer intersection points than other wrong routes like the below
figure.

p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

p11

•
•
•
•
•
•
• •

•
•
•

•
•
•
•
•
•
• •

•
•
•

Also, due to the nature of floating-point arithmetic, it is difficult for the computer to distinguish
routes that share intersection points like the below figure.
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p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•

As we see in above figures, consequently, we must take the appropriate constant. But because it
is dependent on the number of intersection points, we cannot choose it arbitrarily. This problem
was found in the implementation step.

• Strategy to solve this problem:

Our option to avoid the above issue is to instead invert the problem: that is, we replace maximizing
inverse squared distance maxA∈CR

1
r2 to minimizing squared distance minA∈CR r2. The latter term is

similar to the potential of harmonic oscillators. We consider the analogy of this model.

6.2 “Harmonic oscillator” method

Based on the consideration of the “electric” method, we developed a policy to minimize the square of the
distance, and this equation inspired us to consider an analogy with the analytical dynamical description of
harmonic oscillators.

Harmonic oscillators are a system in which a material point is subjected to a force proportional to its
distance from some fixed point. An example is the motion of a mass connected to a wall by a spring.

k
k

m v(t)

x(t)

If mass m has velocity v(t) and displacement x(t) from the natural length of the spring at a time t, this
system has momentum 1

2mv(t)2 and potential 1
2kx(t)

2 where k is a spring constant. Then the Hamiltonian
H(t) and the energy E of this system are defined by

H(t) :=
1

2
mv(t)2 +

1

2
kx(t)2,

E :=

∫
L(t) dt.

We formulate our map-matching problem as the following setup: we take the true root as the loca-
tion where the potential of the system is minimal. Then, assume that the trajectory point has a minute
displacement from the point of minimum potential due to error.

We now assume that our assumptions about error place more emphasis on speed and orientation than
on location information. Therefore, we formulate the distance to the edge to be small. This operation is
consistent with the picture that the harmonic oscillator approximates the system at small displacements from
the point where the potential is smallest.

17



Page 18 of 34 g-RIPS Sendai 2022, Mitsubishi-A

6.2.1 Details of method

We describe the specific procedure of this “harmonic oscillator” method. The abstract of the step is as
follows:

1. Connecting trajectory points by segments

2. Giving speed, direction, and error information to points on polyline connecting trajectory points.

3. Defining a score of edges included in the candidate route and choosing the edge which minimizes the
score.

4. Connecting points on the polyline and anchors on the “closest” edge by “spring”.

5. Defining “momentum” and “potential” of each point on the polyline.

6. Calculating “energy” of “Hamiltonian” for the polyline and each candidate route.

Definition 6.5. Let p = {p0, . . . , pn} be trajectory points

1. We define polyline lp : [0, 1] → RN by

lp(t) := (1− t)pi + tpi+1

(
i

n
≤ t ≤ i+ 1

n
, 0 ≤ i ≤ n− 1

)
. (6.3)

2. We define the speed, direction, and error of each point on the polyline by piecewise linear interpolation:

• (speed) spdlp(t) := (1− t)spdi + tspdi+1

(
i
n ≤ t ≤ i+1

n , 0 ≤ i ≤ n− 1
)
;

• (direction) ulp(t) := (1− t)ui + tui+1

(
i
n ≤ t ≤ i+1

n , 0 ≤ i ≤ n− 1
)
;

• (error) Errlp(t) := (1− t)Erri + tErri+1

(
i
n ≤ t ≤ i+1

n , 0 ≤ i ≤ n− 1
)
.

Definition 6.6 (Score of edges included in candidate route). Let p be a trajectory and lp denotes the polyline
formed by p Let p be a trajectory, lp : [0, 1] → RN be the polyline formed by p and A = {e ∈ E} ∈ CR be
a candidate route.

1. We define the score Slp : [0, 1]×A → R by

Slp(t, e) := ⟨spdlp(t)ulp(t), e⃗⟩RN · dRN (lp(t), e), (6.4)

where e⃗ ∈ RN is the unit vector induced naturally from timestamp information of trajectory.

2. We define the anchor map Anclp,A : [0, 1] → A; t 7→ Anclp,A(t), so that S(t,Anclp,A(t)) = maxe∈A Slp(t, e).

Definition 6.7. Let p be a trajectory and lp denotes the polyline formed by p. We define the “mass” and
“spring constant” of this system then use them to define the “momentum” and the “potential”.

1. We define the mass mlp : [0, 1] → R by

mlp(t) :=
1

Errlp(t) + 1
.

2. We define the momentum Mlp : [0, 1]× CR → R by

Mlp(t, A) := mlp(t)

〈
spdlp(t)ulp(t)

log(1 + spdlp(t))
,
−−−−−−−→
Anclp,A(t)

〉2

RN

(6.5)

where
−−−−−−−→
Anclp,A(t) ∈ RN is the unit direction vector of Anclp,A(t) induced naturally from timestamp

information of trajectory.
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3. We define the spring constant klp : [0, 1] → R by

klp(t) := exp
(
−Errlp(t)

)
. (6.6)

4. We define the potential Plp : [0, 1]× CR → R by

Plp(t, A) := klp(t) ·
(
dErrlp (t)

(
lp(t),Anclp,A(t)

))2
. (6.7)

Remark 6.8. 1. We have now decided to focus on speed and direction rather than positional information
in our assumptions, and have formulated the distance to be small. Therefore, the spring constants
involved in the potential, of which distance is a major component, are allowed to decay exponentially
with respect to the error. On the other hand, for mass, it is similarly affected by errors, but the choice
of the edges connecting the springs is based on the score determined to direction, and since the direction
is assumed to have no error, the correction is assumed to decay about a first order polynomial. 1 is
added to eliminate singularity.

2. Velocities vary widely among pedestrians, bicyclists, and motor vehicles, and momentum can be very
different for them, which can lead to significant differences in results. This is undesirable in light of the
validity of the method. The addition of 1 is to eliminate singularity.

Definition 6.9 (loss function). Let Tr = p be a trajectory. We define a loss function ETr : CR → R by

ETr(A) :=

∫
t∈[0,1]

{
Mlp(t, A) + Plp(t, A)

}
dt. (6.8)

When several candidate routes are given, we calculate the energy of each route on the trajectory points
and choose the route that has the least energy as the true route. For example, trajectory points and candidate
routes are given as below figure, we calculate ETr(A) and ETr(B). Then if ETr(B) < ETr(A) holds, we
choose route B as the true route.

p1

p2

p3 p4

Route A

Route B

6.2.2 Observations

• Strength:

– There is no divergence problem in contrast to the “electric” method.

– We can take into account information about speed, direction, and error naturally.

• Weakness:
The edges connecting the springs were formulated so that only one edge with the smallest score is
selected and the springs are connected to that edge, but this method is inadequate to reflect the shape
of the trajectory points and the shape of the entire route. Consider the case where a route and trajectory
points are given such that a similar shape is repeated.
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Figure 6.23: Given trajectory points and candidate routes.

Figure 6.24: The candidate route that seems to be the true route.

Figure 6.25: The candidate route that is chosen to be the true route by “harmonic oscillator” method in
which the only one route is chosen to be connected to trajectory points

In this case, the true route should be the one that has the same number of peaks. However, the method
of selecting one edge and connecting it to the spring would select a route with only one peak.

To improve this, we want to connect all edges with springs and give them appropriate weights, so that
the shape can be more reflective of the shape.

7 Implementation

After formulating the proposed mathematical methods into robust map-matching algorithms, we imple-
mented them in Python to evaluate their performance numerically. The code written for the project can be
found at: https://github.com/gjgress/G-RIPS-2022-Mitsubishi-A. We will show the resulting solution
of our algorithms on two cornerstone examples:

1. the Square road network with two candidate routes to decide between and a trajectory in a neighbor-
hood of the diagonal Figure 7.26

2. the Sendai map example with road network from OpenStreetMap and trajectory collected from walk
around Sendai. Figure 7.27

The square example has a total of 6 trajectory points and four edges in its road network. The left and
bottom edges (in blue) make up route 1, and the top and right edges (in yellow) make up route 2. The
Sendai example has 645 trajectory points (in blue) and 191 edges (in white).

The dataset we used for evaluation of the electrical and harmonic oscillator methods was the Dataset
for testing and training of map-matching algorithms [KCMMN]. This dataset was a good fit for the project
because it included ground truths, despite only possessing GPS data. We were unable to apply the Wasserstein
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Figure 7.26: Square Example

Figure 7.27: Sendai Example

method to this data set due to issues discussed in § 7.2. Although we pre-processed the BDD100K open
dataset provided by Berkeley for evaluation, it does not contain ground truths, so we were unable to utilize
it for this project. [YCWXCLMD].

7.1 Preprocessing Routes

As the number of edges in a directed graph increases, the number of routes between two nodes grows at a
rate similar to the factorial (and can be infinite if loops are allowed); moreover, the determination of all such
routes is NP-hard. As a result, it is not sufficient to simply determine a suitable loss function and evaluate all
possible routes. Finally, our loss functions are often expressed as integrals, so even once we have our routes,
we need to interpolate each route so that the sum sufficiently approximates the integral. In practice, we do
all this by restricting to a sub-graph, using an algorithm to obtain a restricted set of candidate routes, and
then interpolating the resulting routes. We refer to these steps as preprocessing.

Of course, the preprocessing process need only be done once for a given dataset. That is, once we
preprocess our graph with our trajectory, we can utilize the processed information for all of our algorithms.
Furthermore, all the preprocessed information can readily be saved to disk, so for larger datasets, this need
only be done once.

7.1.1 Restricting to a Sub-graph

The method we use to restrict to a sub-graph is relatively simple. We choose a k ∈ Z+, and for each
point pi in the trajectory, we find the set of k-nearest edges with their respective nodes (or all the possible
edges, in the rare case that there are fewer than k edges), denoted Ek

pi
. Our restricted sub-graph G̃ is then

given by

G̃ =
⋃
pi

Ek
pi
. (7.1)

Unlike k-nearest nodes, k-nearest neighbors are more computationally difficult. A k-d tree is not possible
because we have to consider all points around an edge. As a result, we are forced to rely on geometric tools
to find this set. We do this by choosing an r > 0 and creating a square of size 2r centered at each pi, and
finding the geometric intersection with the road network. If at a given point the square does not intersect at
least k edges, we double the value of r and repeat the process, until we have found enough edges or we have
doubled the value ten times. This method was inspired by the implementation of FMM [YG].

This method is quite inefficient. In the future, we hope to explore using mathematical geometric tools to
better find our sub-graph.
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7.1.2 Obtaining Candidate Routes

Once we have obtained our sub-graph G̃, we utilize a variant on Dijkstra‘s algorithm to generate a list
of short paths between our source and target. First we identify the source and target node on G̃ by finding
the closest neighbor to p1 and pn. Then we follow the standard procedure of Dijkstra’s algorithm by visiting
the nodes connected to the route with lowest cost. Unlike Dijkstra’s algorithm, we keep each route obtained,
even if we have found a shorter route to get to the same intermediate node. We continue Dijkstra’s algorithm
until we have either enumerated every route or have obtained the number of routes desired. We do return
the cost of each route as well, but we do not use this information in our algorithms– the shortest route is not
necessarily the best candidate route!

This method is a reasonably fast way to take a breadth-first search approach, but nevertheless is still quite
slow. Furthermore, while Dijkstra’s algorithm can be modified to allow multiple source and target nodes, we
choose not to apply this as it would require us to generate many more candidate routes to ensure the true
route is within our set.

There are some edge cases where this algorithm will fail. For one, if the number of nearest edges is
not sufficiently high, the sub-graph will not be able to find any candidate route. In this situation one
has to increase the number of candidate edges and start the algorithm from scratch– which can be very
computationally expensive. The algorithm is also not designed to handle routes where the same edge is
traversed more than once; these cases are exceedingly rare, and so we did not find it necessary to modify the
algorithm for this purpose.

This algorithm also is difficult to run in parallel. Conceptually, it should be possible to search multiple
routes at once, but this requires a more robust task assignment process. We did not have the time to explore
this option, and more importantly, it may not be worth it if better candidate route generation methods are
available.

Despite these shortcomings, the candidate routes obtained are usually high quality. Unlike some data-
driven implementations, we also know that when we find our optimal route, it will be a valid route.

7.1.3 Candidate Route Interpolation

The interpolation process is rather simple. Because our objects are Shapely geometries, we can interpolate
each edge using Shapely’s built-in interpolation. We choose constants nr, nt ∈ Z+ and interpolate each edge
of the candidate route into nr segments and each edge of the trajectory into nt segments.

One concern is how to determine the constants nr, nt a priori. We found that choosing nr ≈ 100 and
nt ≈ 10 produced the best results; however, in the future we wish to implement a more dynamic approach
which interpolates based on the relative density of the points.

Typically with simpler loss functions such as the electric method or harmonic oscillator method, increas-
ing the interpolation points does not significantly increase computation time. However, in the case of the
Wasserstein method, it had a big impact on computation time. Thus the optimal choice of nr and nt depend
greatly on the method.

A shortcoming of this method is that it interpolates every edge equitably. This means that very small
edges will have a high density of points, while a long edge will be more sparse. This may give an unfair
weighting to small edges. In the future we wish to explore a dynamic choice of interpolation points based on
the lengths of an edge.

7.2 Wasserstein Distance Implementation

Let {pi} be the set of trajectory points and discretize A ∈ CRG into m+1 equal parts to obtain the set of
threshold points V (A,m) := {a1, a2, . . . , am}. Then, from § 5.1, we know can find the Wasserstein distance
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by solving the following linear program

minimize

n∑
i=1

m∑
j=1

d(pi, aj)π(pi, aj)

subject to π(pi, aj) ≥ 0 for i = 1, 2, . . . , n, j = 1, 2, . . . ,m,

µ(pi) =

m∑
j=1

π(pi, aj) for i = 1, 2, . . . , n,

ν(aj) =

n∑
i=1

π(pi, aj) for j = 1, 2, . . . ,m.

(7.2)

After selecting n,m, we solve this linear program in python using the linprog command from Scipy’s
optimization package. The constraint matrix constructed will be size (n+m)× nm, but only 2mn elements
will be nonzero. Thus, the constraint matrix can be saved as a sparse matrix. For the computation, we
remove one of the constraints, because the system is overdetermined as written. In contrast, it is likely that
no d(pi, aj) will be zero. Therefore, for each candidate route, we must compute nm distances.

For the simple example of a trajectory contained in a square road network, see Figure 7.28, the loss
computed for each route is the Wasserstein distance. The chosen route in this instance is Route 1. We can
see that the loss for Route 1 is smaller, and is the route we would have chosen to be correct through visual
analysis.

Figure 7.28: Wasserstein solution to the Square Example

In contrast, when we apply Wasserstein distance to the example of the Sendai map, the route that mini-
mizes Wasserstein distance is longer and more complex than the true route. In figure Figure 7.29, we see the
route with minimal Wasserstein distance. Not only does it stray from the trajectory substantially, but it also
contains a loop. At this time, we are unsure if this is an issue with the method itself or some implementation
error. One obstacle to determining this is the computational time. Computing the Wasserstein distances on
the set of candidate routes for the Sendai map alone can take several hours.

7.3 Electrical Method and Harmonic Oscillator Implementation

In comparison, the electric method and harmonic oscillator are simpler to compute. Let Tr = {pi} be the
set of trajectory points and A = {qi} be the set of points along a candidate route. For each pi we determine
the k-nearest neighbors from the set {qi}; that is, for each pi we obtain a subset {qj}pi

j∈1,...,k ⊂ {qi}. Then

23



Page 24 of 34 g-RIPS Sendai 2022, Mitsubishi-A

Figure 7.29: Wasserstein solution to the Sendai Example

we compute the sums:

ETr(A) =
∑
pi

k∑
j=1

−1

d(pi, qj)2 + ε
(Electrical Method) (7.3)

ActTr(A) =
∑
pi

k∑
j=1

d(pi, qj)
2 (Harmonic Oscillator Method) (7.4)

where 0 < ε ≪ 1 is a small constant chosen to prevent divergence.
In particular, for the electric method, we choose k = # {qi} (that is, we compare to all the points along

the candidate route), and for the harmonic oscillator method, we choose k = 1 (that is, we only compare
to the nearest neighbor). On one hand, choosing large k means you take into account more of the polyline;
however, points far away from the polyline may have a large influence on the loss. Typically this does not
change the relative losses between two candidate routes, but it does make the losses numerically much closer–
and in extreme cases, we may lose this relative information due to floating point errors. Conversely, for small
k we are only considering the part of the candidate route most relevant to a given point; however, outliers in
the trajectory may cause the loss of a candidate route to be lower than expected. Therefore, it is likely that
the optimal value for k lies somewhere in between. Of course, it is difficult to determine a priori what k is
appropriate for a given case.

7.4 Evaluation (Error) Method

How do we measure the accuracy of our prediction? We use the following formula presented by Newson
and Krumm [NK] to calculate the error:

Err =
d− + d+

d0
where d0 is the length of the correct route, d− is the length the prediction erroneously subtracted from
the ground truth, and d+ is the length the prediction erroneously added outside the ground truth. See
Figure 7.30.
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Ground Truth
Prediction

d0

d−

d+

Err = d−+d+

d0

d0 = length of ground truth

d− = length of prediction route erroneously subtracted

d+ = length of prediction route erroneously added

Figure 7.30: Error Formula by Newson and Krumm

Figure 7.31: FMM evaluated on the annotated dataset

7.5 Preliminary Results

When tested on the dataset, we found that FMM had an error of 14.7% on average 7.31.
Unfortunately, due to processing power and time constraints, we were unable to evaluate our algorithms

on the entirety of the dataset. In particular, the preprocessing stage was too slow on the much larger networks
to allow for testing. As a result we can only provide preliminary results for two of the methods 7.32 7.33.

We anticipate that the geometric methods will perform more accurately than FMM on the dataset, but
at the cost of (significantly) greater computation time.

7.6 Computational Complexity

We tested the computational complexity of the preprocessing stage and our methods. In particular, the
preprocessing stage scales linearly with the number of candidate routes to find, but scales exponentially with
the number of candidate edges provided 7.34. Both the Electric Method and the Harmonic Oscillator Method
seem to scale linearly O(n) with the number of candidate routes 7.357.36. When the number of distance
calculations were increased (i.e. more nodes in the candidate route and trajectory), runtime increased, but not
significantly– certainly slower than linear growth. Unfortunately, the Wasserstein method grew too rapidly
when distance calculations were increased, and so a similar figure could not be produced for the method. We
suspect that it scales as a polynomial of degree > 1 with respect to distance calculations.
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Figure 7.32: Electric Method evaluated on
annotated dataset

Figure 7.33: Harmonic Oscillator Method
evaluated on the annotated dataset

The metric algorithm framework can parallelize over the number of candidate routes, which significantly
improves the computation complexity. It is unlikely that improvements can be made within the loss functions
to parallelize further, as Electric Method and Harmonic Oscillator Method utilize array operations, and
Wasserstein utilizes linear programming.

While candidate route generation has limited room for parallelization, one can easily parallelize the process
across the entirety of the dataset. The simulators can also be easily run in parallel on the entirety of the
dataset.

7.7 Metric-based Algorithm Framework

Because the basic formulation of our proposed map matching algorithms are all purely metric-based, we
realized it was more efficient to write the algorithm in a modular capacity. This led to the creation of the
generalized metric mm algorithm class.

To create a metric based map matching algorithm simulator, one first creates a loss function in one of
two ways:

• Providing simple interior and exterior functions which operate in stages on the distance arrays

• Providing a singular loss function which takes as arguments the candidate route distance array and the
trajectory distance array.

Often it is simpler to provide the latter, but the former may be convenient in the case that one wishes to
make small modifications to the loss function procedure in a systematic capacity.

If preprocessing has already been performed by another simulator, the interpolated candidate route nodes
and trajectory can be provided directly.

The class then provides a preprocessing method if preprocessing has not already been performed. It’s
only required argument is a GeoDataFrame consisting of LineStrings of the trajectory (this can be generated
from a sequence of points using a utility function provided in another module). If candidate routes are not
provided, it applies the variant on Dijsktra’s algorithm described in 7.1.2.

To run the simulator, one simply has to call the run method. This will return the best candidate route
(and its loss) or the loss of all candidate routes depending on parameters passed.

7.8 Data Fusion

In addition to map matching, the Jupyter notebooks providing a framework for implementing and testing
algorithms on driving datasets. One issue that pervades this field of research is the high variety in file format-
ting, and in particular, these formats are not well-suited for containing IMU data. Our notebooks provides
a rudimentary fusion method to align asynchronous data and incorporates IMU data into a GeoDataFrame
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Figure 7.34: Preprocessing Computation Runtimes

Figure 7.35: Electric Method Computation Runtimes
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Figure 7.36: Harmonic Oscillator Method Computation Runtimes

(which can be exported to GPX, GeoJSON, KML, etc.) in a sensible manner. In particular, this method
can sample any discrete-time data such as speed, accelerometer, and gyroscope, and merge it with the GPS
data sequence.

7.9 Other Utilities

In the process of creating this framework, several utility functions and classes have been provided. Within
mm utils.py we provide functions such as:

• Basic plotting methods

• An evaluation method to calculate error

• A method to create trajectory edges (LineStrings) from a sequence of coordinates (Points)

• A method which provides a road network from OSM (as a MultiDiGraph or GeoDataFrame) from the
trajectory data only

• A method to find k nearest points using k-d trees

• A method to find k nearest edges using the method described in 7.1.1

8 Future Work (Implementation)

We briefly mention again improvements discussed in the previous section:

• Modify k-nearest edge search with more efficient methods

• Modify or replace Dijsktra’s algorithm for candidate route generation

• Investigate and improve upon Wasserstein method
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8.1 IMU Inclusion

While IMU approaches were proposed theoretically, we did not have the time to include IMU information
into our algorithm implementations. Currently the generalized metric-based map matching framework does
not pass IMU data to the loss functions, but it is preserved in all the intermediate stages, so it should be
simple to modify it so that the relevant data is passed along.

8.2 Incomplete Map Matching

One area of interest with map matching problems is incomplete maps. Our assumption is that our road
network includes every possible path in reality. Of course, some older roads or even new roads may not
be incorporated into our road network information. One direction of interest is then to explore if we can
determine when roads are missing from our network based on the loss values along the trajectory.

8.3 Extension to Higher Dimensions

Including the z-axis into our implementation faces one major hurdle: OpenStreetMaps does not include
elevation. Because this information is not included within our network, we cannot test our algorithms in
3-space. One can circumvent this by merging elevation data from an external source. However, highways
and roads are often not incorporated into these data sets, and so it is approximate at best. Instead, it is
probably best to source network information from more detailed data sets, such as proprietary sources, but
results can vary greatly depending on the region.

Fortunately, the Python framework developed is quite modular, so if one does have elevation data in
their network and test data, it is easy to implement within our notebooks. Hopefully, with time, data sets
such as OpenStreetMaps will gain detail, and this line of inquiry becomes more accessible to the scientific
community.

9 Conclusion

We developed 3 new loss functions for solving the map-matching problem: Wasserstein, Electrical, and
Harmonic Oscillator. Within each theoretical formulation, not only can we determine a route from distance
information, but also by accounting for speed and direction information. For the Wasserstein distance
method, this achieved through a perturbation of the probability measures on both the trajectory data and
the threshold points on the candidate routes. For the harmonic oscillator, the speed and direction are
incorporated through the momentum term of the Hamiltonian. Each method was also implemented in
Python, but using only the distance information. The results for Wasserstein distance suggests either the
formulation or the implementation requires more investigation. However, the electric and harmonic oscillators
results are promising. Although their computational time is greater than that of FMM, in the experiments
that we have run so far, the accuracy seems much improved.

Appendix A Geometric background of Wasserstein method

This section provides the geometric background of the Wasserstein method in Section 5. Wasserstein
method is based on the concept of “Ricci curvature of graph”, which was introduced by [Ol, LLY]. This
concept is a metric to measure the strength of cohesion between two vertices and has attracted attention as
a new tool for graph analysis and has already been applied to real problems ([JL, NLGGS, NLLG], etc.). We
modified Ricci curvature of graphs to quantify the “strength of cohesion” between the trajectory and each
route.

A.1 Ricci curvature of graphs

In this section, we briefly describe the Ricci curvature of graphs. We consider a weighted graph. Denote
the weight of edge e as we. In this case, the node degree dx of vertex x is dx =

∑
y∼x wxy. We call a graph
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with a weight of 1 on all edges a combinatorial graph. First, we introduce a transition probability measure
on a node. In this section, we use x, y as symbols that denote nodes.

Definition A.1 (Random walk with idleness parameter ε ∈ [0,1]). For each node x ∈ V and ε ∈ [0, 1], we
define a random walk µε

x as follows:

µε
x(y) :=


1− ε (y = x),

ε · wxy

dx
(y ∼ x),

0 (otherwise).

The Ricci curvature with idleness parameter ε is defined as follows.

Definition A.2 (ε-Ollivier–Ricci curvature; [Ol, LLY]). Let ε ∈ [0, 1]. The ε-Ollivier–Ricci curvature
κ(ε;x, y) between two nodes x, y ∈ V is defined as

κ(ε;x, y) := 1−
W1

(
µε
x, µ

ε
y

)
d(x, y)

.

When ε = 0, κ(0;x, y) = 0 for any nodes x, y. Then, in [LLY], they defined a curvature as the (right)
limit limε↓0 κ(ε;x, y)/ε instead of simply assigning ε = 0 (Definition A.6). To confirm the existence of this
limit, the following two lemmas were shown.

Lemma A.3 ([LLY, Lemma 2.2]). For any ε ∈ [0, 1] and x, y ∈ V , we have

|κ(ε;x, y)| ≤ 2ε

d(x, y)
.

Lemma A.4 ([LLY, Lemma 2.1]). For two vertices x, y, κ(ε;x, y) is concave in ε ∈ [0, 1].

The shape of κ(ε;x, y) in ε ∈ [0, 1] was later examined in more detail.

Theorem A.5 ([BCLMP, Theorem 3.4], [CK, Theorem 3.2]). For any connected, locally finite and simple
graph G = (V,E) and any of its nodes x, y, the function φ : ε 7→ κ(ε;x, y) is concave and piecewise linear on
[0, 1]. Moreover, the number of its partitions is at most 3. In particular, φ(ε) := κ(ε;x, y)/ε is constant for ε
sufficiently close to 0.

In [BCLMP], the case of x ∼ y was shown, then in [CK] established the general case by using the
Kantorovich duality of W1 distance.

From Lemma A.3 and Lemma A.4, we can see the existence of the (right) limit limε↓0 κ(ε;x, y)/ε.

Definition A.6 (LLY–Ricci curvature; [LLY]). We define the LLY–Ricci curvature κ(x, y) between two
nodes x, y ∈ V as

κ(x, y) := lim
ε↓0

κ(ε;x, y)

ε
.

Although LLY–Ricci curvature κ(x, y) is a limit value, it can be obtained by linear programming ([CKLLS])
thanks to Theorem A.5. Moreover, the Graph Curvature Calculator3 has been developed to calculate LLY–
Ricci curvature of each edge of a graph by inputting node and edge information.

3https://www.mas.ncl.ac.uk/graph-curvature/ On this page, you can select from the tabs in the lower left corner to
calculate various types of curvatures. The tab “Lin–Lu–Yau Curvature” allows you to calculate the curvatures used in this
study. Remark that these are calculated on unweighted graphs, and the following discussion considers weighted graphs.
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A.2 “Ricci curvature” between the trajectory and route

According to Definition A.6, we introduce a “curvature” between the trajectory and each route. It is this
quantity that determines which routes the trajectory is closer to.

The denominator d(x, y) used in the Definition A.6 (i.e. Definition A.2) was the distance between the
two vertices x, y of the target. In this setting, the target to be measured is not two vertices but two “sets
of vertices”. Therefore, it is necessary to first consider what the quantity corresponding to d(x, y) should
be in this setting. In conclusion, we adopt W1(µp, νA) (with respect to the route A) as described in the
midterm presentation. This is because W1(µp, νA) was quantifying the distance between the trajectory and
route using only the location information of the trajectory. We next need to consider the amount of the
numerator of Definition A.2. In the idea of Definition A.6, they perturbed the Dirac measures4 at x, y by
ε along the graph structure. In the setting of Wasserstein method (§ 5.2), the vertices of the local road
network are only the trajectory and the divided points {a1, . . . , am, b1, . . . , bm} of each route A and B, and
thus it is a problem of how to introduce the edges. Note that we define the transition probabilities for
routes as combinatorial graphs. Then, we consider introducing weighted edges using the input speed
and direction at each trajectory point and we set up and defined them as described in § 5.3.

Now that ε-perturbation measures have been defined, we can define the “curvature” between the trajectory
and routes as in Definition A.2 and Definition A.6. In the following, we will write about route A only, since
the definition is the same for both routes A and B.

Definition A.7 (ε-Ricci curvature between the trajectory and route). Let ε ∈ [0, 1]. The ε-Ricci curvature
κ(ε;p, A) between the trajectory p and route A is defined as:

κ(ε;p, A) := 1−
W1(µ

ε
p,A, ν

ε
A)

W1(µp, νA)
. (A.1)

We next want to prove the corresponding properties for Lemma A.3 and Theorem A.5. However, we prove
only the concavity of the function ε 7→ κ(ε;p, A) corresponding to Lemma A.4 (Proposition A.9) because the
piecewise linearity of h like Theorem A.5 is not yet clearly known (see also § 5.4).

Proposition A.8 (ε-boundedness of κ(ε;p, A)). For any ε ∈ [0, 1], we have

|κ(ε;p, A)| ≤ 2ε

W1(µp, νA)
.

Proof. By the triangle inequality of W1, we obtain

W1(µ
ε
p,A, ν

ε
A) ≤ W1(µ

ε
p,A, µ

0
p) +W1(µ

0
p,A, ν

0
A) +W1(ν

0
A, ν

ε
A) = W1(µ

0
p,A, ν

0
A) + 2ε = W1(µp, νA) + 2ε,

W1(µ
ε
p,A, ν

ε
A) ≥ W1(µ

0
p,A, ν

0
A)−W1(µ

0
p,A, µ

ε
p,A)−W1(ν

0
A, ν

ε
A) = W1(µ

0
p,A, ν

0
A)− 2ε = W1(µp, νA)− 2ε.

This implies the following:

− 2ε

W1(µp, νA)
≤ κ(ε;p, A) := 1−

W1(µ
ε
p,A, ν

ε
A)

W1(µp, νA)
≤ 2ε

W1(µp, νA)
.

Proposition A.9 (Concavity of κ(ε;p, A)). The function h : [0, 1] ∋ ε 7→ κ(ε;p, A) ∈ R is concave.

Proof. Let ε1, ε2, ε3 be 0 ≤ ε1 < ε2 < ε3 ≤ 1 and t := (ε3 − ε2)/(ε3 − ε1). Then, ε2 = tε1 + (1− t)ε3 holds.
We show that

κ(ε2;p, A) ≥ tκ(ε1;p, A) + (1− t)κ(ε3;p, A) (A.2)

holds. First, we show the following.

4Here, notice that d(x, y) can be transformed to d(x, y) = W1(δx, δy) and µ0
x = δx, µ0

y = δy . This means that the fraction
Definition A.2: W1(µε

x, µ
ε
y)/W1(δx, δy) measures the fundamental probability measures δx, δy in the denominator and the ε-

perturbations µε
x, µ

ε
y of them in the numerator, with W1 between them, respectively.
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Claim Let πj be the optimal coupling between µ
εj
p,A and ν

εj
A , with respect to j = 1, 3. Then, π2 :=

tπ1 + (1− t)π3 is a coupling between µε2
p,A and νε2A .

Proof of Claim
By the definition of π2, we obtain∑

v1∈V

π2(v1, v2) = t
∑
v1∈V

π1(v1, v2) + (1− t)
∑
v1∈V

π3(v1, v2) = tνε1A (v2) + (1− t)νε3A (v2)

= t · 1

m

∑
a∈V (A)

νε1a (v2) + (1− t) · 1

m

∑
a∈V (A)

νε3a (v2), (A.3)

∑
v2∈V

π2(v1, v2) = t
∑
v2∈V

π1(v1, v2) + (1− t)
∑
v2∈V

π3(v1, v2) = tµε1
p,A(v1) + (1− t)µε3

p,A(v1)

= t · 1
n

∑
p∈p

µε1
p,A(v1) + (1− t) · 1

n

∑
p∈p

µε3
p,A(v1). (A.4)

It is sufficient to check that the right hand side of (A.3) and (A.4) coincide with νε2A (v2) and µε2
p,A(v1),

respectively.
(A.3) ( i ) In the case of v2 ∈ V (A): it holds that

(A.3) = t · 1

m
(1− ε1) + (1− t) · 1

m
(1− ε3) =

1

m
(1− ε2) =

1

m

∑
a∈V (A)

νε2a (v2) = νε2A (v2).

(ii) In the case of v2 ∈ p: it holds that

(A.3) = t · 1

m

(
ε1 ·

1

n

)
·m+ (1− t) · 1

m

(
ε3 ·

1

n

)
·m =

1

m

(
ε2 ·

1

n

)
·m =

1

m

∑
a∈V (A)

νε2a (v2) = νε2A (v2).

(iii) In the case of v2 ∈ V (B): it holds that (A.3) = 0 = νε2A (v2).

(A.4) (iv) In the case of v1 ∈ p: it holds that

(A.4) = t · 1
n
(1− ε1) + (1− t) · 1

n
(1− ε3) =

1

n
(1− ε2) =

1

n

∑
p∈p

µε2
p,A(v1) = µε2

p,A(v1).

(v) In the case of v1 ∈ V (A): it holds that

(A.4) = t · 1
n

∑
p∈p

(
ε1 ·

1 + wp(v1)

m+ 1

)
+ (1− t) · 1

n

∑
p∈p

(
ε3 ·

1 + wp(v1)

m+ 1

)
=

1

n

∑
p∈p

(
ε2 ·

1 + wp(v1)

m+ 1

)

=
1

n

∑
p∈p

µε2
p,A(v2) = µε2

p,A(v2).

(vi) In the case of v1 ∈ V (B): it holds that

(A.4) = t · 1
n

∑
p∈p

(
ε1 ·

wp(v1)

m+ 1

)
+ (1− t) · 1

n

∑
p∈p

(
ε3 ·

wp(v1)

m+ 1

)
=

1

n

∑
p∈p

(
ε2 ·

wp(v1)

m+ 1

)

=
1

n

∑
p∈p

µε2
p,A(v2) = µε2

p,A(v2).

This concludes the proof of Claim. ■

From Claim, we obtain

W1(µ
ε2
p,A, νA) ≤

∑
v1,v2∈V

π2(v1, v2)d(v1, v2) = t
∑

v1,v2∈V

π1(v1, v2)d(v1, v2) + (1− t)
∑

v1,v2∈V

π3(v1, v2)d(v1, v2)

= tW1(µ
ε1
p,A, νA) + (1− t)W1(µ

ε3
p,A, νA).
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This yields the following:

κ(ε2;p, A) := 1−
W1(µ

ε2
p,A, ν

ε2
A )

W1(µp, νA)
≥ t

(
1−

W1(µ
ε1
p,A, ν

ε1
A )

W1(µp, νA)

)
+ (1− t)

(
1−

W1(µ
ε3
p,A, ν

ε3
A )

W1(µp, νA)

)
= tκ(ε1;p, A) + (1− t)κ(ε3;p, A).

This proves (A.2).

Definition A.10 (Ricci curvature between the trajectory and route). The existence of the value of the
limit limε↓0 κ(ε;p, A)/ε is guaranteed by Proposition A.8 and Proposition A.9. We define this value as Ricci
curvature κ(p, A) between the trajectory and route A:

κ(p, A) := lim
ε↓0

κ(ε;p, A)

ε
.

Observation A.11. We determined the route with the smallest (5.5) to be the output as the true route.
Note that if (5.8) holds, then we obtain

κ(ε;p, A) := 1−
W1(µ

ε
p,A, ν

ε
A)

W1(µp, νA)
< 1−

W1(µ
ε
p,A, ν

ε
A)

W1(µp, νA)
=: κ(ε;p, B).

Therefore, the Wasserstein method is a method that outputs the route with the largest Ricci curvature with
the trajectory as the true route.

Remark A.12. As mentioned in § 5.4, we have not shown the piecewise linearity like Theorem A.5 in
LLY–Ricci curvature yet.

Remark A.13. This value may require modifications in the way the weights (Definition 5.13) are assigned,
as we have not yet calculated the concrete examples.
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