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Map-matching
Given GPS trajectory data and a road map, map-matching is the process of
determining the route on the map that corresponds to the trajectory data.

Web mapping services Autonomous Vehicles [H]
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Problem Statement

Let us fix N ∈ N, N ≥ 2, but almost everywhere we consider the case N = 2.

Definition (Trajectory)

A trajectory Tr is a sequence p = (p1, p2, . . . , pn) of points in RN equipped with
a sequence t(p) = (t1, . . . , tn) of positive numbers satisfying t1 < t2 < · · · < tn,
called the timestamp of p,
a sequence spd(p) = (spd1, . . . , spdn) of positive numbers called the speed of
p (optional),
a sequence u(p) = (u1, . . . , un) of unit vectors in RN , called the direction of p
(optional).
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Definition (Road Network)

A road network (also known as a map) is a directed graph G = (V, E) consists of
the set V (resp. E) of vertices (resp. edges) with an embedding ϕ : |G| → RN of the
geometric realization |G| of G. We will identify G and the image ϕ(|G|) by ϕ as long
as there is no confusion.

Definition (Local Road Network)

A local road network is a directed connected subgraph of G = (V, E).

5 / 51



Introduction to map-matching
Wasserstein method

“Physical” method
Numerical Results

Mathematical assumption
The “distance" with error

Road Network

6 / 51



Introduction to map-matching
Wasserstein method

“Physical” method
Numerical Results

Mathematical assumption
The “distance" with error

Local Road Network

7 / 51



Introduction to map-matching
Wasserstein method

“Physical” method
Numerical Results

Mathematical assumption
The “distance" with error

Problem Statement

Definition (Route)
A route r on a road network G = (V, E) is a sequence of connected edges
(e1, e2, . . . , en) ⊂ E, i.e. the head of ei coincides with the tail of ei+1 for each
i = 1, 2, . . . , n − 1. Let R denote the set of all routes.

Definition (Candidate Routes)
For the local road network graph as H of the road network G, we define

CRH = CR B {routes on a local road network graph H},
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Problem Statement

Definition (Map-Matching)

Given a road network G = (V, E) and a trajectory Tr, the map-matching,MRG(Tr),
is the route that is the argument of the minimum of some function L : CR → R+,
called the loss function.
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Map-matching Pipeline

Road network and trajectory Pre-processing

Candidate routes

Minimize loss function

Optimal route
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Mathematical Formulation

Assumption

Give the GPS error as Err : p→ R≥0 and assume
that the spherically-symmetric probability measure
γp (e.g. Gaussian measure) is given such that

supp γp = B
(
p; Err(p)

)
B
{
x ∈ RN

∣∣∣ dRN (x, p) ≤ Err(p)
}
.

We assume that p ∈ p is truly located at x with
probability γp(x).

Suppose that there is NO error with respect to
the speed and direction information.

edge

p1

p2

p3

Err(p2)

supp γp2

x

Exist with
probability γp2 (x).
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Definition (The “distance" with error between p ∈ p and e ∈ E)

• Define the “distance" with error dErr between p ∈ p (with errors) and e ∈ E (without
errors) as

dErr(p, e) B
∫

xp∈B
(

p;Err(p)
) dRN (xp, e) dγp(xp).

p
xp1

xp2

xp3

edge e

dRN (xp3 , e) B min
xe∈e

dRN (xp3 , xe)

= 0
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Wasserstein method
Definition ((L1-)Wasserstein distance (review of mid-term presentation))

Let (X, d) be a complete and separable metric space. For probability measures µ, ν with
finite supports, we define W1 distance between µ and ν as

W1(µ, ν) B min
π∈Π(µ,ν)

∑
x∈X

∑
y∈X

d(x, y)π(x, y),

where π ∈ Π(µ, ν) :⇔ for any x, y ∈ X,
∑

y∈X π(x, y) = µ(x),
∑

x∈X π(x, y) = ν(y).

Definition (Prob. meas. associated w/ p and A ∈ CR)

• For the trajectory p, define µp B (1/n)
∑

p∈p δp.
• ▷ Devide each A ∈ CR into m + 1 equal parts and

V(A,m) denotes the set of m threshold points.
▷ Define νA B (1/m)

∑
a∈V(A,m) δa.

A

B

Compare W1(µp, νA) with W1(µp, νB).
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Motivation

A

B

• Each p ∈ p is located on the
vertical or parallel bisectors.
• spd(p), Err(p) are the same at

each p, respectively.

Location only.
▷ W1(µp, νA) < W1(µp, νB).

We should select the route B.

Introduce probability measures µεp,A, νεA and νεB
that include speed and direction information.
▷ Compare W1(µεp,A, ν

ε
A) with W1(µεp,B, ν

ε
B).

▷ The effect of location is still strong.

Normalization.
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Introduce probability measures µεp,A, νεA and νεB
that include speed and direction information.
▷ Compare W1(µεp,A, ν

ε
A) with W1(µεp,B, ν

ε
B).

▷ The effect of location is still strong.

Normalization.

▷
W1(µεp,A, ν

ε
A)

W1(µp, νA)
>

W1(µεp,B, ν
ε
B)

W1(µp, νB)
.

▷ We can select the route B.
17 / 51



Introduction to map-matching
Wasserstein method

“Physical” method
Numerical Results

Review of mid-term presentation
Motivation
Our strategy
Summary & Future problem

Our strategy: Perturb µp and each ν only by ε according to speed and direction.

• Let 0 < ε ≪ 1. For each p ∈ p, A ∈ CR, a ∈ V(A,m) and x ∈ V(A,m), define

µεp,A(x) B

(1 − ε)/n (x = p),
ε ·
(
our weight including S &D

)
(x ∈ V(A,m)),

supp µp

supp µεp,A
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Our strategy: Perturb µp and each ν only by ε according to speed and direction.

• Let 0 < ε ≪ 1. For each p ∈ p, A ∈ CR, a ∈ V(A,m) and x ∈ V(A,m), define

νεA(x) B

(1 − ε)/m (x ∈ V(A,m)),
ε/n (x ∈ p).

supp νA

supp νεA
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Summary & Future problem

Summary

Quantify the distance between p ∈ p and each A ∈ CR by making µp and νA

ε-pertubation according to speed and direction information.

Conclude that the route A with the smallest W1(µεp,A, ν
ε
A)/W1(µp, νA) is the

true route.

Future problem (from a theoretical point of view)

Is this method also effective when CR is dense?

Formulation of µp with (γp)p∈p.
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“Electric” Method : Review of Mid-presentation

p1

p2

p3 p4

Route A

Route B Figure: Connecting traj.
pts. and giving charges.

Figure: Moving to
“closer” route.

Considering not only trajectory points, but also the entire polyline.
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“Electric” Method : Problems

Problems:
× Not taking into account speed and direction information.
× Divergence problem :

∫
polyline

∫
route r−2

Even if
∫

polyline

∫
route(r2 + ε)−1, affects of intersection point is too large.

p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
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“Electric” Method : Strategy to Solve the Problems

Strategy:
Replace “maximizing inverse square” to “minimizing square”;

max
A∈CR

1
r2 : “electric” method

min
A∈CR

r2 : “harmonic oscillator” method

22 / 51



Introduction to map-matching
Wasserstein method

“Physical” method
Numerical Results

“Electric” Method
“Harmonic oscillator” method

“Harmonic Oscillator” Method : General Setting

k
k

m v(t)

x(t)

m :mass,
k :spring constant,
v(t) :verocity of mass point,
x(t) :displacement from natural
length of spring
Lagrangian

L(t) =
1
2

mv(t)2 +
1
2

kx(t)2

Action

Act =
∫

L(t) dt =
∫ {

1
2

mv(t)2 +
1
2

kx(t)2
}

dt
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“Harmonic Oscillator” Method : Settings in Map-matching Problem

p Errpe1

e2

vp

B

e1

p ∈ RN : trajectory point,
vp = spdpup ∈ R

N : speed at p,
Err(p) ∈ R : error of p,
B ∈ CR, e ∈ B

S (p, e) : score of edge e

B ⟨v, e⃗⟩RN exp (−dErr(p, e))

Connect trajectory point to the highest score edge by “spring”.
Define “Lagrangian” of this system.
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“Harmonic Oscillator” Method : Settings in Map-matching Problem

e1

xp mp

kp

vs

vp

vs : spring direction component of vp

xp = dErrp(p, e) : “displacement” of p

mp =
1

1+Err(p) : “mass” of p,
kp = exp (−Err(p)) : “spring constant” w.r.t. p,

M(p) = mp

∥∥∥∥ vs
log(1+|vp |)

∥∥∥∥2 : “momentum” of p,

P(p) = kpx2
p : “potential” of p,

L := M(p) + P(p) : “Lagrangian”.
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“Harmonic Oscillator” Method : Settings in Map-matching Problem

p0

p1

pn−1 pn

B

lp

p = (pi)0≤i≤n : traj. points,
vp = (vi = spdiui)0≤i≤n : velocity,
Err : p→ R : error,
B ∈ CR : route.

lp : [0, 1]→ RN : polyline,
vlp : [0, 1]→ RN : velocity,
Errlp : [0, 1]→ R : error,

L(t) := M(lp(t)) + P(lp(t)), Actp(B) :=
∫

[0,1]
L(t) dt : “action” of p on B.
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“Harmonic Oscillator” Method : Settings in Map-matching Problem

p1

p2

p3 p4

Route A

Route B

Calculate Actp(A) and Actp(B).
Choose the route that minimize action.
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“Harmonic Oscillator” Method : Strength/Weakness and Future
Problem

Strength/weakness:
✓ No divergence problem,
✓ Taking into account speed and direction naturally,
× Insufficient consideration of the entire route.

Future problems:
Consider more appropriate way to define mass and spring constant.
Connect to all edge of a route with appropriate weight to consider the
whole route.
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“Electric Method" and "Harmonic Oscillator": Proof of Concept
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Implementing metric-based methods

Why are we defining each of the metric-based functions here, instead of in a
separate Class? Because metric_mm is designed to accommodate any
distance-based loss function, allowing for simple and customizable simulator
creations.
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Sendai Map Revisited

Now we revisit the Sendai map case.
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Minimize loss function

Optimal route
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Sendai Map Revisited

Obtaining Candidate Routes (Dijsktra’s Algorithm)
CPU times: user 45.8 s, sys: 49.7 ms, total: 45.9 s
Wall time: 45.9 s

Preprocessing Candidate Routes
CPU times: user 12.7 s, sys: 103 ms, total: 12.8 s
Wall time: 12.8 s
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Sendai Map Revisited

Least Squares Runtime
CPU times: user 1.53 s, sys: 29.9 ms, total: 1.56 s
Wall time: 1.55 s

Inverse Squares Runtime
CPU times: user 14.2 s, sys: 392 ms, total: 14.6 s
Wall time: 10.2 s

Wasserstein Runtime
(Computation times vary wildly based on parameters- anywhere
from 20 seconds, to 20 minutes, to 2.5 hours)
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Sendai Map Revisited
Unfortunately, due to FMM relying on outdated libraries, we could not produce an
image demonstrating FMM’s performance on the new trip data. Our preliminary
findings demonstrated that FMM still performed poorly on the dataset. For the

sake of comparison, recall FMM’s results on the older GPS dataset:

We also note that FMM runs in roughly 5 seconds on our current dataset.
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Sendai Map: Least Squares (Harmonic Oscillator) Result
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Sendai Map: Inverse Squares (Electrical Method) Result
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Sendai Map: Wasserstein Method Result
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Computational Complexity (Metric Calculations)

The following scatter plots demonstrates how computation grows as a function of
input nodes.
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Computational Complexity

This suggests that simple distance methods (like inverse squares and least
squares) have a computational complexity of O(n). Due to processing power, we
could not obtain enough data to infer the computational complexity of the
Wasserstein method. Because it relies on linear programming, we hypothesize
that the growth rate is a polynomial of degree > 1.

Some aspects of these algorithms can be improved upon– simple parallelization
techniques offer a noticeable increase. However, other aspects are inherent to the
method and are difficult to improve.
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Preliminary Numerical Results

Due to limits in processing power, we were unable to test our algorithms against all
of the data in the dataset. However, we demonstrate a few cases here.
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Future Work (Implementation)

While a naive Dijkstra method generates a good set of candidate routes, it
has many shortcomings. It is still relatively slow, it is conditional on the given
parameters, and it cannot handle stranger routes (traversing an edge more
than once). Each of these individually can be addressed; or it may be more
suitable to find an alternative candidate route generation method.
Investigate Wasserstein method inconsistencies more thoroughly
Incomplete road networks
Implement IMU-based map matching approaches
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