

Implementation of Park-and-Rides to Reduce Road Emissions and Traffic Congestion: a Queuing Theory Approach

Amanda E Hampton, University of Colorado, Boulder Ayane Nakamura, University of Tsukuba Fabiana Ferracina, Washington State University Naoki Sakata, Tokyo University of Science

Outline

- Introduction
- Park-and-Ride Traffic Model via Queueing Analysis
 - Results
- Emissions Model
 - Results
- Cost Comparison
 - Convenience vs. Environmental
- Conclusions

Introduction

ENERGY, SOLUTIONS

Japan Pledges to Become Carbon Neutral by 2050

BY EARTH.ORG ASIA OCT 27TH 2020 3 MINS Private cars Other 98.5 million tons ransport sector 171 million tons [46.2%] (Automobiles, (14.4%) ships, etc.) Break 213 million tons down 《17.9%》 Total CO₂ Commercial trucks emissions Business and other 42.4 million tons 1,190 million tons [19.9%] sectors (2017)270 million tons (17.4%) Private trucks Industrial sector 35.32 million tons 413 million tons [16.6%] (34.7%) Home sector 186 million tons 《15.6%》

How can Tsukuba provide convenient, accessible, *and* sustainable public transportation?

Future trajectory:

- 1. Smaller spheres of living
- 2. Local infrastructure
- 3. Fewer individual trips

Proposed Park-and-Ride

- Cost Comparison:
 - Convenience via Queueing Model
 - Environment via Emissions Model

- Available Datasets:
 - Person Trip Survey
 - Bus Location

Queueing analysis: A/S/ c queuing model

Modelling & Analysis

Performance measures (output):

Waiting time, Total time, Number of waiting customers, ...

Service Station

(Van Woensel, 2007)

- Maximum traffic density k_j (vehicle/km):
 - Maximum number of vehicles on per unit road
 - \rightarrow physical size of the service station = $1/k_j$
- Service station = G/D/1 queue
 - General arrival process
 - Convolution of arrival processes of cars and buses (numerically obtained)
 - Deterministic (fixed) service time = $1/\mu$
 - μ (veh/h) = v_{NS} (Nominal speed) (km/h) × k_j (vehicle/km)
 - $T_n(h) = k_j \times d_n$ (distance) (km) $\times R_n$ (sojourn time) (h/vehicle) (main output:) Traveling time on road

Analysis of Park-and-Ride queueing model

Under two stability conditions (for the number of customers in a queue does not diverge to infinity):

(1)
$$\lambda_n(1-p) < \frac{C_{bus}}{b_n}$$
, (2) $\lambda_n p + \frac{1}{b_n} < \mu$,

(for the queue of bus customers) (for the queue of vehicles in the service station)

• Letting $L_n(t)$ and $N_n(t)$ denote the numbers of vehicles in the service station and the waiting bus customers, $\{(L_n(t), N_n(t)); t \ge 0\}$ becomes a multidimensional continuous time stochastic process under the set space $S = \{(i, j); i = 0, 1, ..., j = 0, 1, ...\}.$

 \rightarrow obtain the steady state probability numerically:

$$\pi_{i,j} = \lim_{t \to \infty} \mathcal{P}(L_n(t) = i, N_n(t) = j)$$

Performance measures (output)

By a simulation, we obtain

v: Speed of a car (km/hr) R_n : Sojourn time of a car in the service station (hr) W_n : Waiting time for a bus customer (hr) T_n : Traveling time for a vehicle on the road (hr) $TotalTrip_n = T_n + (1-p)W_n$: Total trip time for a customer (hr)

Assumptions for simulation (1)

— estimation of **a maximum traffic density** k_{i}

(vehicle/km)

Approximation: the service station on the current road is an M/D/1 queue

Almost all of the vehicles are private cars (Poisson arrivals represented by M)

(original assumption: G/D/1 queue)

Analytical result of expected

Procedure

Assumptions for simulation (1)

— estimation of a maximum traffic density k_i (vehicle/km)

Solution of the last equation:

 $\lambda^{all}_{current}$: Current arrival rate of all the vehicles (From real data) $k_j := \begin{cases} \frac{\lambda_{current}^{all} (2\mathrm{E}[T_{current}]v_{NS} - d_n)}{2v_{NS}(\mathrm{E}[T_{current}]v_{NS} - d_n)}, & \mathrm{E}[T_{current}]v_{NS} - d_n > 0, \\ \frac{\lambda_{current}^{all}}{2v_{NS}(\mathrm{E}[T_{current}]v_{NS} - d_n)}, & \mathrm{E}[T_{current}]v_{NS} - d_n > 0, \end{cases}$ $\mathbf{E}[T_{current}]v_{NS} - d_n \leq 0.$ Simple assumption: Exception: Drivers in the real world Every driver travels at the sometimes do not keep the nominal speed... nominal speed v_{NS}

Assumptions for simulation (2) — introduction of **bus policy coefficier** $r \in (0, 1)$

To satisfy the stability condition (1) for the bus customers, i.e.,

$$\lambda_n(1-p) < \frac{C_{bus}}{b_n},$$

We assume that the bus departure interval is as follows:

$$b_n := \frac{C_{bus}}{\lambda_n (1-p)} \times r$$

Queueing Model Parameters: Implementation

- Clean person-trip survey dataset provided arrival rates for customers and vehicles, as well as initial travel times
- Bus capacity was fixed at 80 (number of customers) for all scenarios
- Nominal speed was fixed at 80 km/hr for all scenarios
- % car usage ranged from 0-90% and results were computed for every 10%
- Bus policy coefficient (*r*) was obtained for each % car use, for each hub, via a brute force search in the linear space [0,1) for the minimizer of total trip time:

We will look at some results for one hub - Sakura district in more detail

Queueing Results: Average Trip Times

Queueing Results: Time of Day Effects

Queueing Results: Trip Time Trend for % car use

Queueing Results: Waiting Time Trend for % car use

Emission Estimations

- Evaluating environmental impact of new and conventional traffic system
- Focus on the emission product
- Two types of mathematical emission model.
 - 1. Dynamic model \rightarrow instantaneous
 - 2. Static model \rightarrow average
- Use static model [1]

[1]: Jo, H.; Kim, H. Developing a Traffic Model to Estimate Vehicle Emissions: An Application in Seoul, Korea. Sustainability 2021, 13, 9761. https://doi.org/10.3390/su13179761

Emission Function

- Numerous emission functions depending on the parameters
- The argument of the function is the average speed.
- No CO₂ function in this paper, so we used national emission factor data.

emission product	fuel type	age	$\mathcal{E}(v)$	v_t	$\mathcal{E}(v)$ for $v \ge v_t$
CO	diesel	new	$52.136v^{-0.8618}$		

Algorithm

$$T\mathcal{E}_{i,j,k,l,m} = \sum_{i,j,k,l,m} VKT_{i,j,k,l,m} * \mathcal{E}(v)_{i,j,k,l,m}$$

i vehicle type, j fuel, k vehicle age, l emission product, and m vehicle displacement. VKT the vehicle kilometers traveled

- The unit of emission function is g/km
- Emissions are calculated by the product of the emission function and the distance.
- By calculating the sum, one can calculate the total emission of the emission product.

Output from Real Data

Calculating Emission from Person Trip and Bus Location data.

(above: Private Car, below: Bus)

- Determine parameter from National Data (eg. the number of car by fuel)
- The emission of Private Car is much bigger than Bus.
- The emission of Private Car is high in rush hour time
- Bus emission is constant during the day
- CO2 is major emission product

Queueing Model \rightarrow Emission Model

- Combine emission model with Queueing Model
- Velocity and distance is required for emission model.
- Distance and sojourn time in the service station are outputs from Queueing model
- Velocity are obtained by equation from Queueing Model

Emission from Queueing Model

Plot emission for each probability(Car Usage)

- Almost monotonically increasing with respect to probability
- It is thought to be due to capacity of the vehicle (Bus: 80, Private Car: 1)
- CO2 emission is proportional to distance and the number of vehicle in the road
- As bus user increases, the number of vehicles on the road decreases.

Convenience Cost vs. Environmental Cost

	Scenario		p(%)	total traveling time (h	nrs) total emissions (kg)
	PnR		0	17489.26	126055.03
			10	55892.46	101588.77
As <i>p</i> increases, so does the number of private cars.		20	66059.75	116335.91	
		30	74170.65	114737.08	
		40	79146.82	124880.05	
		50	85860.41	149157.89	
		60	84871.50	185969.05	
			70	89153.13	216539.00
			80	85546.84	225431.32
		•	90	90025.94	240680.46
	Current		$\sim 85.5 \sim$	91806.167	77838.63

Convenience Cost vs. Environmental Cost

Convenience Cost vs. Environmental Cost

Does a PnR system make a significant difference?

- Bus location data only has data for one bus company
- Slow speed contributions
- Choice of *r* optimal for total traveling time.
- Does the current public transport in Tsukuba only serve 15% of the population?

Conclusions:

- Queueing good method to model traffic behavior under various scenarios
- Emissions need to be quantified to align with future goals
- Results imply current public transport in Tsukuba only optimal for current usage

Future Directions:

- 1. Queueing:
 - a. Other service process and more servers
 - b. Decision between private car and public transport
 - c. Choice of parameter *r*
 - d. 'Strategic' queueing model
- 2. Emissions:
 - a. Static vs. Dynamic model
 - b. Consider hybrids and electric vehicles
- 3. Input parameters:
 - a. Consider particular populations
 - b. Finer time scales
 - c. Other modes of transport, more data
 - d. Machine learning to select policy parameters

Thank you!

Questions are welcome

 \odot

Relevant References:

General Transportation Policy Division, T. C. P. D. (2021). Tsukuba city regional public transportation plan. https://www.city.tsukuba.lg.jp/_res/projects/default_project/_page_ /001/014/531/R3_keikakusyo.pdf

Jo, H.; Kim, H. Developing a Traffic Model to Estimate Vehicle Emissions: An Application in Seoul, Korea. Sustainability 2021, 13, 9761. https://doi.org/10.3390/su13179761

Medhi, J.Stochastic models in queueing theory. Elsevier, 2002.

Van Woensel, T., Vandaele, N. Modeling traffic flows with queueing models: a review. Asia-Pacific Journal of Operational Research, 24(4), 435-461, 2007.