

Classical Parameter-Setting Strategies for the Quantum Approximate Optimization Algorithm (QAOA)

August 8, 2024

Group Members: Rie Fujii (Ochanomizu University) Shinichiro Kakuta (Waseda University) Nadav Kohen (Indiana University) Spencer Lee (Michigan State University) Kanon Sakurai (Ochanomizu University) Academic Mentor: Phillip Kerger (University of California, Berkeley)

Industry Mentors: Aruto Hosaka, Isamu Kudo, Tsuyoshi Yoshida (Mitsubishi Electric Corporation)

Overview

- 1. Introduce combinatorial optimization.
- 2. Introduce the QAOA.
- 3. Describe the homogeneous proxy.
- 4. Describe our newly proposed QAOA distribution proxy.
- 5. Present computational results.
- 6. Future Work.

What can quantum computing and QAOA be useful for?

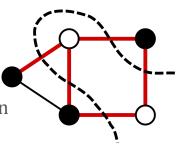
Motivation: Why Combinatorial Optimization Problems?

We want to solve **Combinatorial Optimization Problems**

Max Cut

 \rightarrow to solve the best grouping under complex conditions.

☆ It has important application in computer chip design.



Knapsack Problem

 \rightarrow to find the best way of packing a bag, or truck or airplane, that has limited space.

 \rightarrow to find the best combination from $\ensuremath{\mbox{discrete}}$ and $\ensuremath{\mbox{finite}}$ options

Traveling Salesman Problem

 \rightarrow to find the fastest way to visit all of them.

Motivation: Why Quantum Computing?

Quantum computers:

- Impressive in theory (much faster than classical computer)
- Limited in practice (high noise, high error ...)

The Quantum Approximate Optimization Algorithm (QAOA) doesn't need many quantum bits (qubits)

suitable for near-term devices

CAOA solves combinatorial optimization problems!

GOAL: Propose more efficient (and better quality) solutions

to **combinatorial optimization problems** using QAOA

Motivation: Why QAOA?

AOA solves combinatorial optimization problems!

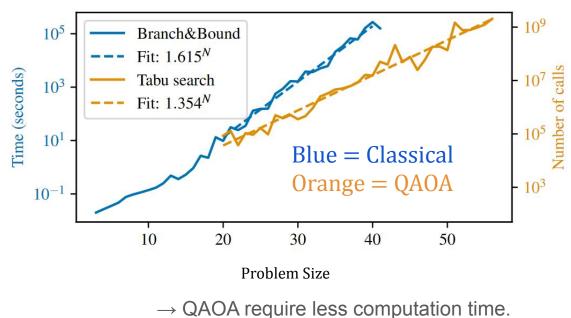
Recent Results:

QAOA is advantageous in terms of scaling for certain problems.

QAOA might be faster

than classical optimization for certain problems!

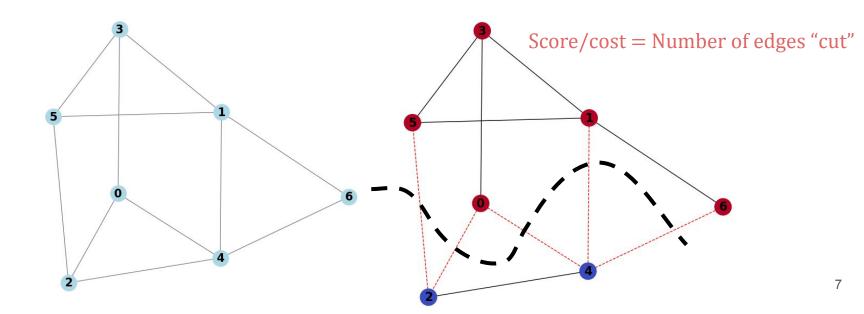
Time to Solve vs LABS Problem Size



Motivation: What is MAX-CUT?

With QAOA, we solve the Max Cut Problem:

Divide a graph into two groups to maximize the number of edges connecting the two groups.



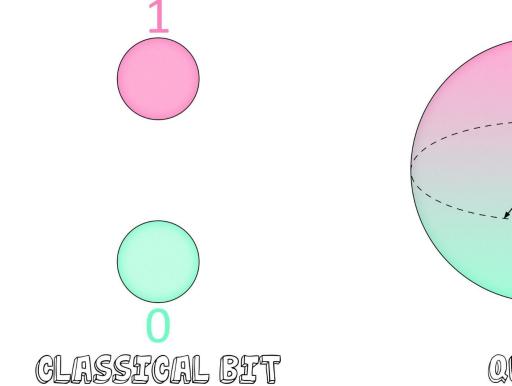
Problem statement is easy to understand.

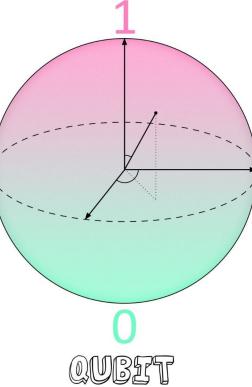
NP-hard \Rightarrow Doing well on MaxCut is impressive.

Applying QAOA to MaxCut is simple. (Effective method has already been established.)

The method is promising for different types of graphs (ex: network)

Qubits





Quantum Computing

With *n* qubits, we can represent a superposition of 2^{*n*} bitstrings of 1's and 0's:

$$|x\rangle = \sum_{i=1}^{2^n} q(y_i)|y_i\rangle, \quad \in \mathbb{C}^{2^n}$$

For
$$n = 3$$
:
 $y_1 = 000, \quad y_2 = 001, \quad y_3 = 010, \quad y_4 = 011,$
 $y_5 = 100, \quad y_6 = 101, \quad y_7 = 110, \quad y_8 = 111$
Probability of measuring $|y_1\rangle = |000\rangle$ is $q(y_1)$

With *n* qubits, we can represent a superposition of 2^n bitstrings of 1's and 0's:

$$|x\rangle = \sum_{i=1}^{2^n} q(y_i)|y_i\rangle, \quad \in \mathbb{C}^{2^n}$$

In QAOA, each bitstring represents a possible solution.

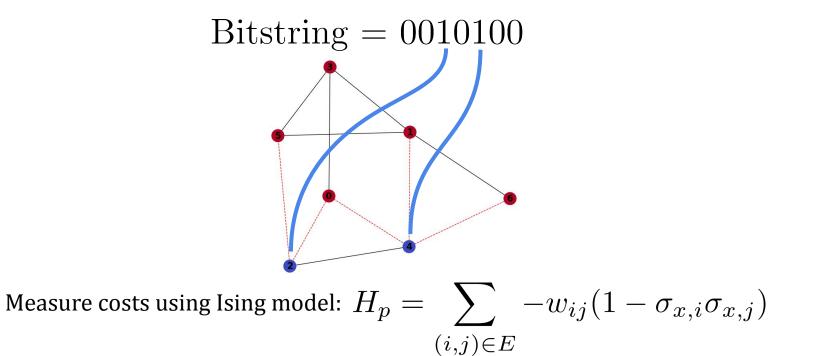
Can measure **expectation** : average "strength" of the solutions:

$$\langle x|H_p|x\rangle = \vec{x}^{\dagger}H_p\vec{x}$$

High expectation \Rightarrow high chance of measuring a "good" solution.

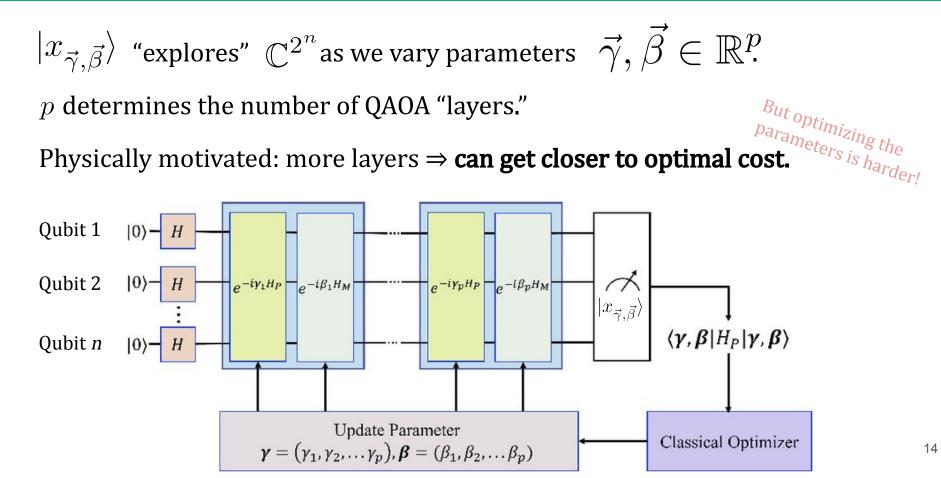
For *N* vertices, we use *N* qubits.

Each bit in a bitstring determines which partition to place a vertex in.



13

QAOA Circuit

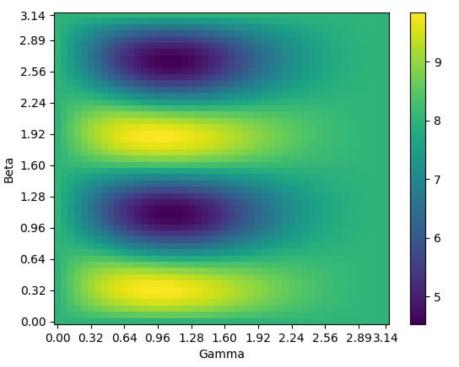


Optimizing QAOA Circuit

Simple
$$p=1$$
 case.
Vary $\vec{\gamma}, \vec{\beta} \in \mathbb{R}^p$ until we

find the maximum.

Expectation (weighted cost average) vs Parameters



Methodology

Parameter Setting

We have a lot of parameters.

Optimizing them is **expensive** !

Simulating QAOA is **expensive** !

Real quantum computing is **hard!**

Figure The number of parameters we tune. (Moog synthesizer)

QAOA produces nearly "homogeneous" states, where (basis) states with the same cost have similar probability amplitudes.

If the amplitudes are *exactly the same*, we can reduce the size of our model.

Homogeneous Model

Full QAOA

How the Homogenous Proxy Works

Before proxy:
$$|x_{\ell}\rangle = \sum_{i=1}^{2^{n}} q_{\ell}(y_{i})|y_{i}\rangle$$

 $|x_{\ell}\rangle \in \mathbb{C}^{\# \text{ Possible Bitstrings}} = 2^{n}$
After proxy: $|z_{\ell}\rangle = \sum_{i=1}^{n^{2}} Q_{\ell}(c_{i})|c_{i}\rangle$
 $|z_{\ell}\rangle \in \mathbb{C}^{\# \text{ Possible Costs}} = \# \text{ Edges}^{ShalleR}$

How the Homogenous Proxy Works

To calculate the proxy state changes through each layer of QAOA:

$$|z_{\ell}\rangle = \sum_{c} Q_{\ell}(c)|c\rangle$$

$$Q_{\ell}(c) = \sum_{d,\hat{c}} \operatorname{coeff} \times Q_{\ell-1}(\hat{c}) \underbrace{N(c;d,\hat{c})}_{\text{# Bitstrings with cost } c \text{ and distance of from bitstrings with cost } \hat{c}}_{\text{from bitstrings with cost } \hat{c}}$$

How the Homogenous Proxy Works

 $N(c; d, \hat{c})$

Bitstrings with cost *c* and distance *d* from bitstrings with cost

Generally, the distribution *N* doesn't really exist. It approximates the real distribution:

$$n(x; d, \hat{c})$$

Depends on bitstring! たカい!

Our Research Objective

 $N(c; d, \hat{c})$

Bitstrings with cost *c* and distance *d* from bitstrings with cost

Our research is about finding new distributions *N* to approximate *n*.

Binomial and Multinomial Approximations

Calculation of

 $N(c; d, \hat{c})$

requires binomial and multinomial probabilities, many times for the proxy calculation

 \rightarrow We want **approximations** to speed it up

Binomial and Multinomial Approximations

The safest method for both of them is to use the

NORMAL DISTRIBUTION .

Other possibilities to approximate:

• Binomial distribution

• Multinomial distribution

Binomial Approximations

The normal distribution

SAFETY

The Poisson distribution

LIMIT

The Edgeworth expansion method

CORRECTION

Multinomial Approximations

The normal distribution

SAFETY AS WELL

The Poisson distribution

SORT OF LIMIT

The Edgeworth method

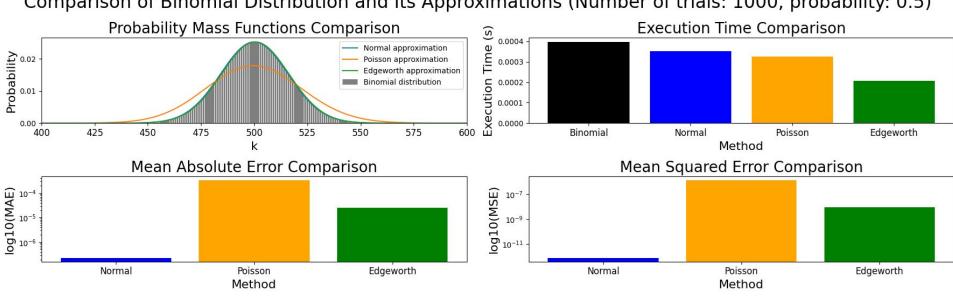
ALSO CORRECTION

The Laplace approximation

ESTIMATION FOR SHAPE

The Markov Chain Monte Carlo (MCMC)

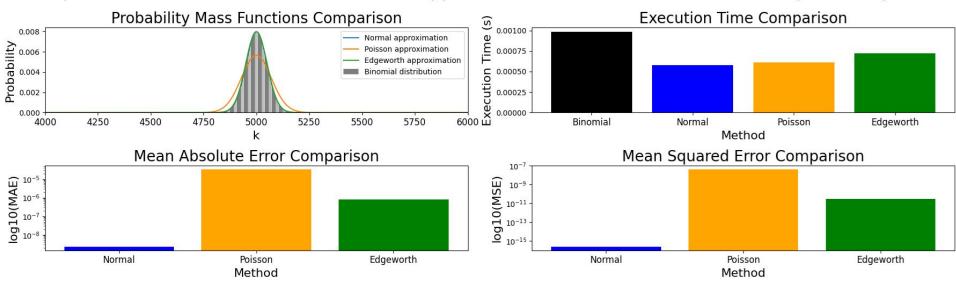
SAMPLING METHOD



Comparison of Binomial Distribution and Its Approximations (Number of trials: 1000, probability: 0.5)

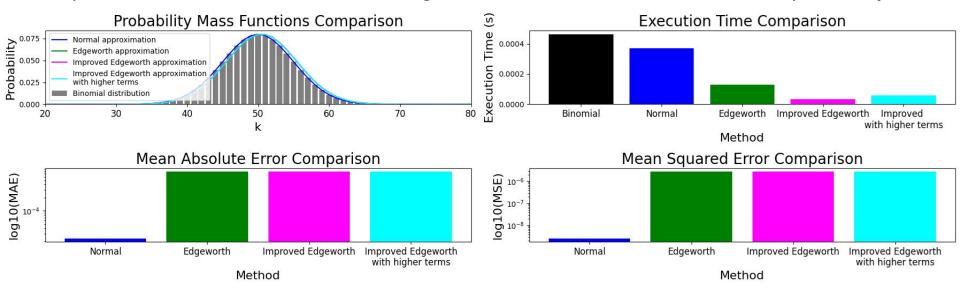
RUNTIME OF THE EDGEWORTH SEEMS TO BE SO FAST

Binomial Approximations



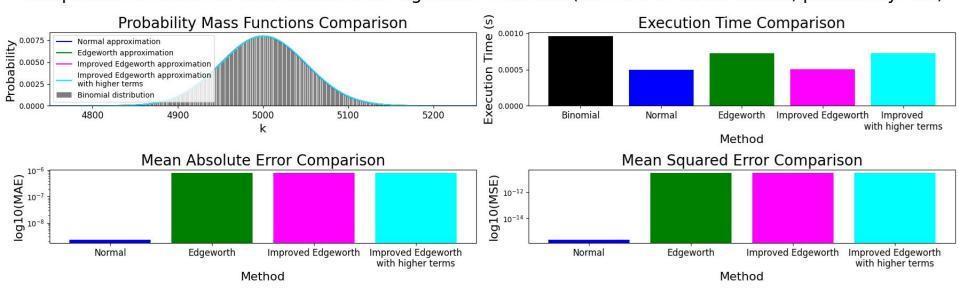
Comparison of Binomial Distribution and Its Approximations (Number of trials: 10000, probability: 0.5)

BUT IT EXCEEDS THE NORMAL FOR SUFFICIENTLY LARGE SIZE.



Comparison of Binomial Distribution and Edgeworth Methods (Number of trials: 100, probability: 0.5)

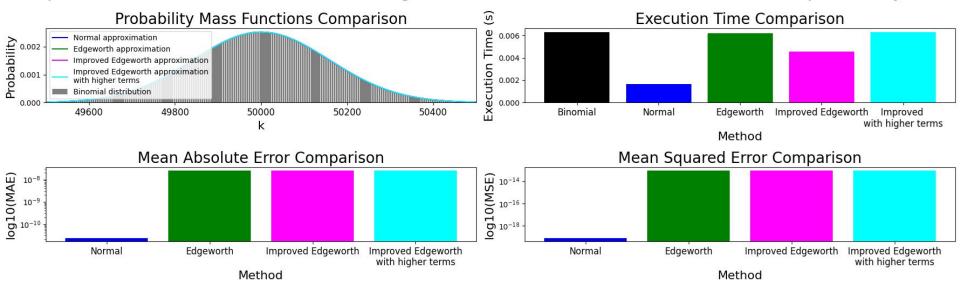
FASTER EDGEWORTH METHODS DO EXIST.



Comparison of Binomial Distribution and Edgeworth Methods (Number of trials: 10000, probability: 0.5)

THE METHOD WITH HIGHER TERMS IS SLOWER FOR LARGE n.....

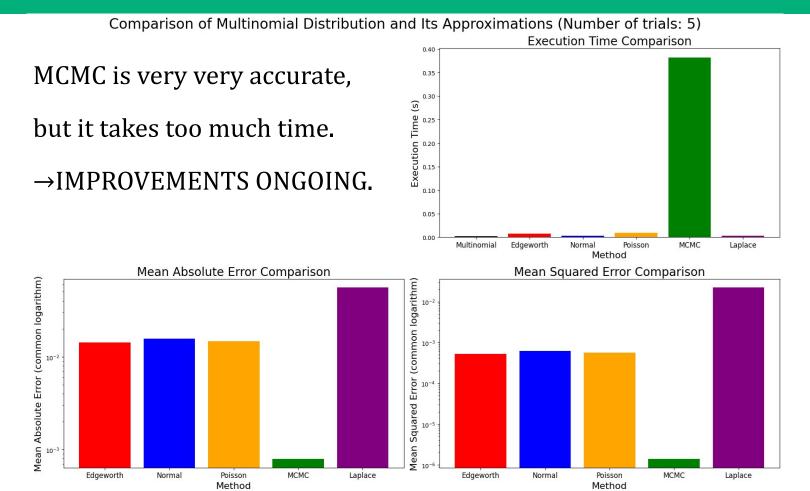
Binomial Approximations



Comparison of Binomial Distribution and Edgeworth Methods (Number of trials: 100000, probability: 0.5)

EVEN IMPROVED EDGEWORTH METHODS UNDERPERFORM FOR SOME RANGE.

Multinomial Approximations



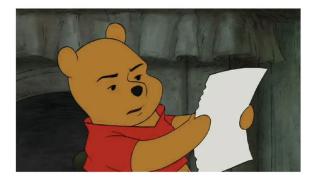
Modifying the Homogeneous Proxy

Paper Proxy Distribution

Theoretically derives average distribution for Random CSPs.

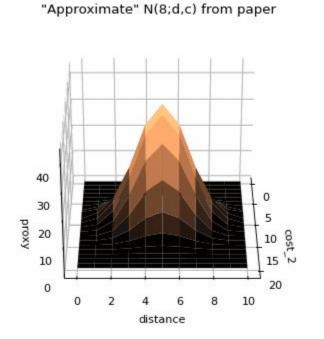
Uses that derived form with MaxCut probabilities.

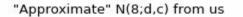
Claims to achieve an **acceptable** approximation.

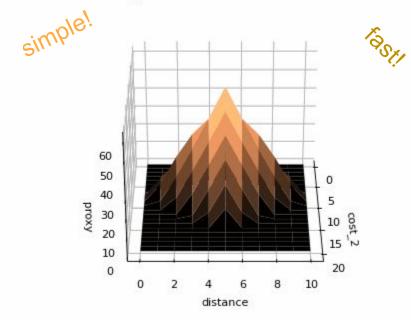


Relatively **inefficient** to compute.

Our Proxy Distribution







wow!

Our Proxy

Full QAOA

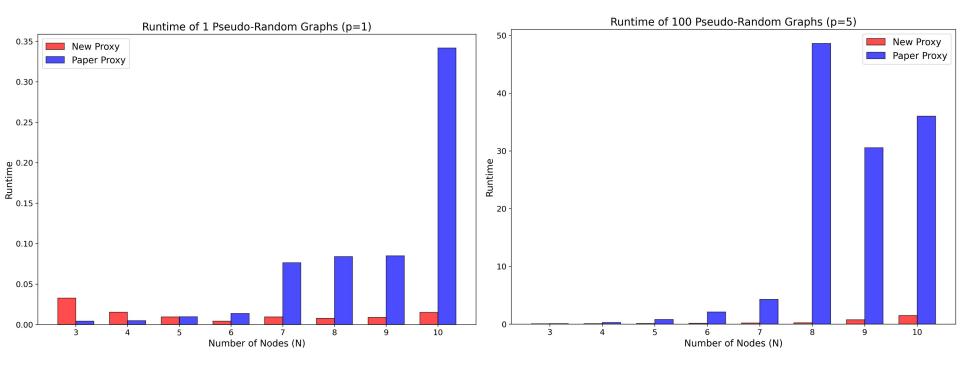
Our Proxy Distribution:

- Small
- Simple
- Very fast!

Computational Results

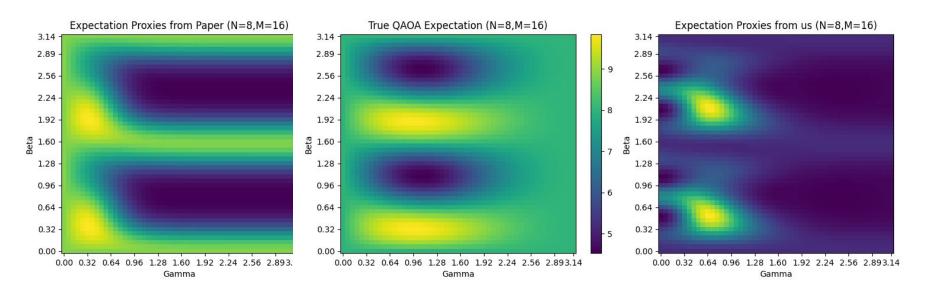
Runtime

Our new proxy requires less runtime.

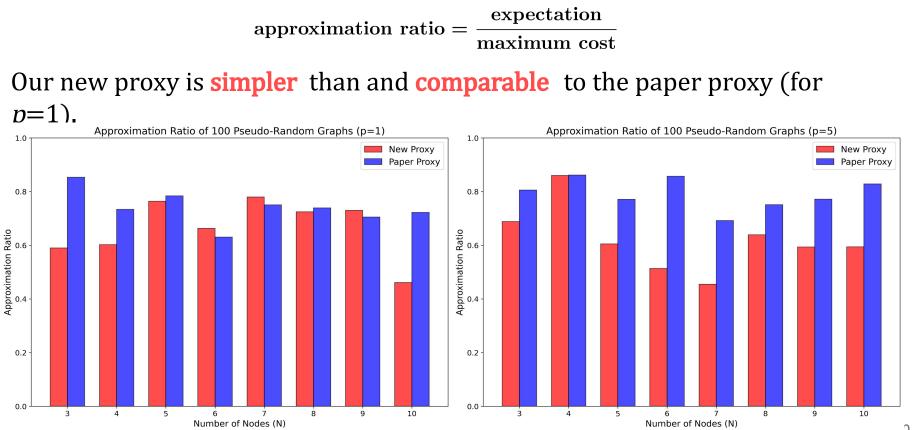


Expectation

Our proxy demonstrates **a similar ability** to accurately capture the locations of the maxima (for p=1).

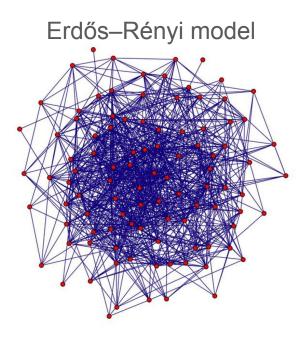


Approximation Ratio

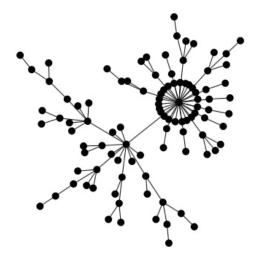


Application to Other Graphs

The current proxy algorithm can **only** be used with a specific class of graph.

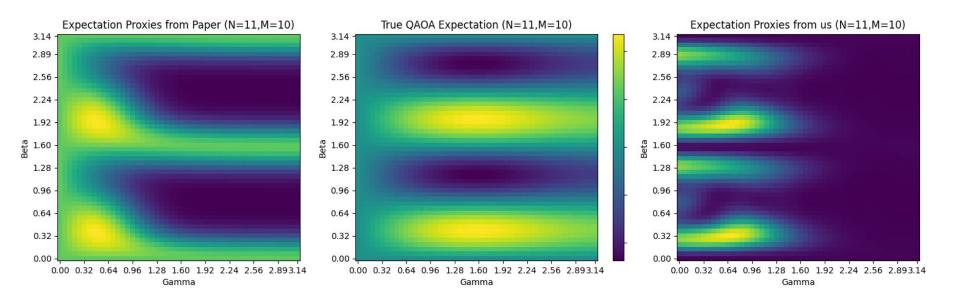


Barabási-Albert model



Application to Other Graphs

Currently, our proxy and paper proxy **fail to accurately capture the location of the maxima** in other graphs.



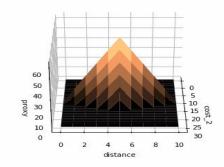
Parameterized Proxy Improvements (ongoing...)

Parameterization of Our Proxy - for Flexibility!

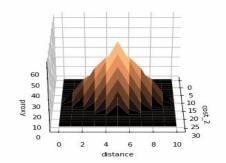
(height squash, peak shift, left flatten, right flatten)

Original

"Approximate" N(15;d,c) for (0, 0, 1, 1)



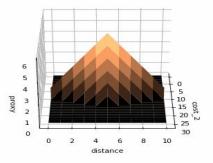
Off-Center



"Approximate" N(15;d,c) for (0, 3, 1, 1)

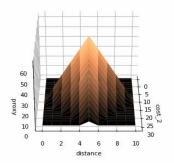
"Approximate" N(15;d,c) for (58, 0, 1, 1)

Squashed



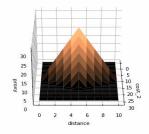
"Approximate" N(15;d,c) for (0, 0, 3, 3)

Wider

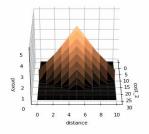


Parameterization of Our Proxy

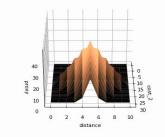
"Approximate" N(15;d,c) for (31.63, 5.14, 2.42, 0.25)



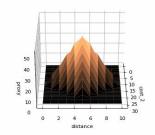
"Approximate" N(15;d,c) for (58.81, 0.31, 1.78, 1.32)



"Approximate" N(15;d,c) for (15.24, 7.93, 1.77, 2.16)

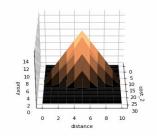


"Approximate" N(15:d.c) for (11.06, 5.06, 1.63, 1.08)

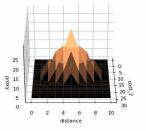


Different parameters at each layer?

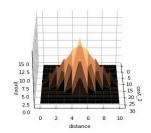
"Approximate" N(15;d,c) for (47.43, 1.23, 0.73, 0.37)



"Approximate" N(15;d,c) for (34.69, 3.38, 0.38, 0.23)



"Approximate" N(15;d,c) for (45.55, 7.91, 0.89, 0.02)



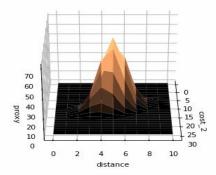
"Approximate" N(15;d,c) for (51.3, 0.99, 1.45, 1.6)



45

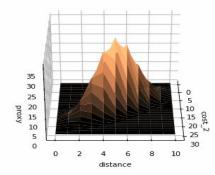
$$Q_{\ell}(c) = \sum_{d,\hat{c}} \operatorname{coeff} \times Q_{\ell-1}(\hat{c}) N(c;d,\hat{c})$$

Parameterized Normal Proxy

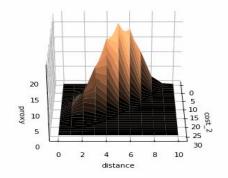


"Approximate" N(29;d,c) for (15, 5, 1)

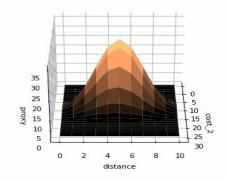
"Approximate" N(29;d,c) for (15, 20, 1)



"Approximate" N(29;d,c) for (5, 50, 1)



"Approximate" N(29;d,c) for (15, 5, 4)



Parameterized Proxies

How should we optimize our distributions?

• Fit to multinomial approximation

- Fit to real distribution data
 - For each problem instance

• Fit to give best QAOA performance

- **Improve** the proxy and **extend** its applicability to generic problems.
 - Parameterized approach
 - \circ "Learning" good distributions to use for a problem class

• A **"mathematical" explanation** of why our proxy is better for p=1.

• Write a paper!

Key Takeaways

• QAOA parameter sensitivity and optimization challenges

Improvements in classical methods for **precomputing** good parameters
 by polishing a parameter-setting approach based on the homogeneous QAOA proxy

- Some results in existing work are potentially **misleading**
 - This issue may be present in multiple existing works!
 - That puts into question the usefulness of some those approaches

Key Takeaways

- The models **need to be revised** to achieve stronger performance in general
 - Some approaches which could lead to better or more general classical parameter precomputing methods were not successful yet.

The existing literature is **narrow** in the problems that QAOA is applied to.
 o Some existing methods may not generalize well.

- Development of **an advanced open-source toolkit** for an existing parameter setting heuristic and many QAOA-related utilitie
 - Python-compatible code, Julia backend, GPU-compatible code, many utilities for QAOA-related tasks
 - It makes QAOA research and application more accessible and efficient

Thanks For Listening!

Special Thanks Mitsubishi Electric, AIMR, IPAM, MathCCS, TFC Industry Mentors: Aruto Hosaka, Isamu Kudo, Tsuyoshi Yoshida

Mathematical Science Center for Co-creative Society, Tohoku University

Classical Computer VS Quantum Computer

Classical Computer		Quantum Computer
Bit 0 or 1	minimal unit	Qubit (=quantum bit)
Always either 0 or 1	state	Superposition: $ \psi\rangle \in \mathbb{C}^{2}$ $ \psi\rangle = \alpha_{0} 0\rangle + \alpha_{1} 1\rangle$ $(0\rangle = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, 1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix})$
Time is proportional to the computational complexity. Error correction is possible.	feature	Entanglement : qubits affect other qubits *n qubits : $ \psi\rangle = \sum_{\mathbf{x} \in \{0,1\}^n} \alpha_{\mathbf{x}} \mathbf{x}\rangle \in \mathbb{C}^{2^n}$ Sometimes exponentially faster \leftarrow good !
Widely applicable (data processing, software execution etc)	application	Specifically applicable (optimization problems, cryptanalysis etc)

- Characteristics
 - **Growth** : Network expands over time with the addition of new nodes
 - **Preferential Attachment** : New nodes are more likely to connect to nodes with many connections

- Applications
 - **Internet** : Web page link structures
 - **Social Networks** : Connections between people
 - **Biological Networks** : Protein interactions

- Characteristics
 - **High Clustering** : Nodes tend to form tightly-knit groups
 - Short Path Lengths : Average distance between nodes is short

- Applications
 - **Social Networks** : Social interactions and information spread
 - **Neuroscience** : Brain connectivity and information processing
 - **Epidemiology** : Spread of diseases and viruses

Erdős–Rényi Model

n/N will be different for different classes of graphs. We focus on Erdős–Rényi:

Consider all graphs with *N* vertices and *M* edges. Pick one randomly.

