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Overview

Introduce combinatorial optimization.

Introduce the QAOA.

Describe the homogeneous proxy.

Describe our newly proposed QAOA distribution proxy.
Present computational results.

Future Work.
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What can quantum computing and QAOA be

useful for?




Motivation:Why Combinatorial Optimization Problems?

We want to solve Combinatorial Optimization Problems !

— to find the best combination from
discrete and finite options

Max Cut
— to solve the best grouping
under complex conditions.

It has important application Traveling Salesman Problem
in computer chip design. \ — to find the fastest way to visit all of them.
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Knapsack Problem %9 .

— to find the best way of \%
packing a bag, or truck or
airplane, that has limited / :
space.




Motivation: Why Quantum Computing?

Quantum computers:

e Impressive in theory (much faster than classical computer)
e Limited in practice (high noise, high error ...)

The Quantum Approximate Optimization Algorithm (QAOA)
doesn’t need many quantum bits (qubits)
\)
suitable for near-term devices

QAOA solves combinatorial optimization problems!

GOAL: Propose more efficient (and better quality) solutions

to combinatorial optimization problems using QAOA i




Motivation: Why QAOA?

QAOA solves combinatorial optimization problems!

Recent Results: Time to Solve vs LABS Problem Size
QAOA is advantageous in terms 10° o
: . =ee Bity 14615
of scaling for certain problems. 107 ] |— Tabu search
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QAOA might be faster —

Time (seconds)

Blue = Classical
Orange = QAOA

than classical optimization for 10 20 30 40 50
certain problems! Problem Size

— QAOA require less computation time.



Motivation: What is MAX-CUT?

With QAOA, we solve the Max Cut Problem:

Divide a graph into two groups to maximize the number of edges connecting
the two groups.
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Score/cost = Number of edges “cut”




Motivation: Why MAX-CUT?

Problem statement is easy to understand.

NP-hard = Doing well on MaxCut is impressive.

Applying QAOA to MaxCut is simple.
(Effective method has already been established.)

The method is promising for different types of graphs (ex: network)



Background
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Quantum Computing

With n qubits, we can represent a superposition of 27 bitstrings of 1’s and 0’s:
2’}’L
2’77,
z) = qy)ly), €C
1=1

For n = 3:

y1 = 000, 7o =001, y3 =010, y4 = 011,
ys = 100, yg =101, yr =110, ys =111

Probability of measuring |y;) = |000) is ¢(y1)

1



What is the QAOA?

With n qubits, we can represent a superposition of 2” bitstrings of 1's and 0’s:
2’}’1,
27’2,
z) = qy)ly), €C
1=1

In QAOA, each bitstring represents a possible solution.

Can measure expectation : average “strength” of the solutions:
L —»T —
(x|Hplx) = ' Hp

High expectation = high chance of measuring a “good” solution. 12



How to Encode MaxCut?

For N vertices, we use N qubits.

Each bit in a bitstring determines which partition to place a vertex in.

Bitstring = 0010100

Measure costs using Ising model: Hp = E — W j (1 — 0'3;77;0'5,;,]')
(1,7)eFE
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QAOA Circuit

\x% 3 ) “explores” (2" as we vary parameters v, 0 € RE
p determines the number of QAOA “layers.”

Physically motivated: more layers = can get closer to optimal cost.

Qubitl |0)H H —~ - -

.

Qubit2 |0) H e~ ViHp Mo—ifiHum =T~ YpHP [ —iBpHM

=
!
~—

Qubitn |0y H i I v, BlHply, B)

Update Fammmeter Classical Optimizer
Y= (}’1:}’2»---}’;;):3 = (ﬁpﬁz:---ﬁp) . ' 14




Optimizing QAOA Circuit

Expectation (weighted cost average) vs Parameters
3.14
2.89

2.56

Simple p=1 case. 2.24
1.92

Vary 7, 8 € R” until we 2 100

. . 1.28
find the maximum. .
0.64

0.32

0.00

0.00 0.32 0.64 0.96 1.28 1.60 1.92 2.24 2.56 2.893.14
Gamma
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Methodology



Parameter Setting

We have a lot of parameters.
Optimizing them is expensive !
Simulating QAOA is expensive !

Real quantum computing is hard!

Figure
The number of parameters we tune.
(Moog synthesizer)
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Homogeneous Proxy

QAOA produces nearly “homogeneous” states, where (basis) states with the
same cost have similar probability amplitudes.

If the amplitudes are exactly the same, we can reduce the size of our model.

Full QAOA Homogeneous Model
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How the Homogenous Proxy Works

Before proxy: |.’L’g> — Z QK(yz)‘yz>

‘Q?g> c C# Possﬂole Bitstrings = 2

After proxy: | jod £ Z Q ¢ C’L ‘CZ
Sty

%@,
‘Zg> c C# Possﬂole Costs = # Edges



How the Homogenous Proxy Works

To calculate the proxy state changes through each layer of QAOA:

2 =3 Qule)e)

# Bitstrings with cost cand distance d



How the Homogenous Proxy Works

N(c;d, ¢)

# Bitstrings with cost c and distance d
from bitstrings with cost

Generally, the distribution N doesn’t really exist. It approximates the real

distribution:
Va\
n(x; d, c

Depends on bitstring! 727>\ !
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N\
N(c;d,¢)

# Bitstrings with cost c and distance d
from bitstrings with cost

Our research is about finding new distributions N to approximate n.
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Binomial and Multinomial Approximations

Calculation of
N(c;d, ¢)

requires binomial and multinomial probabilities,
many times for the proxy calculation

— We want approximations to speed it up
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Binomial and Multinomial Approximations

The safest method for both of them is to use the
NORMAL DISTRIBUTION .
Other possibilities to approximate:

e Binomial distribution

e Multinomial distribution
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Binomial Approximations

The normal distribution

SAFETY

The Poisson distribution

LIMIT

The Edgeworth expansion method

CORRECTION
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Multinomial Approximations

The normal distribution

The Poisson distribution

The Edgeworth method

The Laplace approximation

The Markov Chain Monte Carlo (MCMC)

SAFETY AS WELL

SORT OF LIMIT

ALSO CORRECTION

ESTIMATION FOR SHAPE

SAMPLING METHOD 26



Binomial Approximations

Comparison of Binomial Distribution and Its Approximations (Number of trials: 1000, probability: 0.5)
Execution Time Comparison

Probability Mass Functions Comparison =
—— Normal approximation (] 0.0004
_4?0.02 1 ~—— Poisson approximation € 0.0003
-I—: —— Edgeworth approximation =
© B Binomial distribution € 0.0002
Q 001 o
g § 0.0001
0.00 T T L o.0000
400 425 575 600 L Binomial Normal Poisson Edgeworth
k Method
Mean Absolute Error Comparison Mean Squared Error Comparison
w107 W 1077
S g
= 107 =20 9
— —
8w 8ot
Normal Poisson Edgeworth Normal Poisson Edgeworth
Method Method

RUNTIME OF THE EDGEWORTH SEEMS TO BE SO FAST......
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Binomial Approximations

Comparison of Binomial Distribution and Its Approximations (Number of trials: 10000, probability: 0.5)

Probability Mass Functions Comparison Execution Time Comparison

0.008 > ~ 0.00100
—— Normal approximation

0

(]

——— Poisson approximation E
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o
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)
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k Method
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BUT IT EXCEEDS THE NORMAL FOR SUFFICIENTLY LARGE SIZE.
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Binomial Approximations

Comparison of Binomial Distribution and Edgeworth Methods (Number of trials: 100, probability: 0.5)

Probability Mass Functions Comparison O Execution Time Comparison
> 0.075 4 — Normal approximation Ty GE) 0.0004
= —— Edgeworth approximation —
‘8 0.050 1 —— Improved Edgeworth approximation =
g ___ Improved Edgeworth approximation cC) 0.0002
© 0.025 with higher terms =]
& mmm Binomial distribution 8
0.000 o e . @ 0.0000 .
20 30 40 50 60 70 80 é Binomial Normal Edgeworth Improved Edgeworth Improved
k with higher terms
Method
Mean Absolute Error Comparison Mean Squared Error Comparison

E E 1077

O 107 o

— —

o o 1078

) : L) , ‘

Normal Edgeworth Improved Edgeworth Improved Edgeworth Normal Edgeworth Improved Edgeworth Improved Edgeworth
with higher terms with higher terms
Method Method

FASTER EDGEWORTH METHODS DO EXIST.
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Binomial Approximations

Comparison of Binomial Distribution and Edgeworth Methods (Number of trials: 10000, probability: 0.5)

Probability Mass Functions Comparison O Execution Time Comparison
— 0.0010

>, 0.0075 1 —— Normal approximation il T aE’
E —— Edgeworth approximation Y —
'8 0.0050 {1 —— Improved Edgeworth approximation | = 016005
g Improved Edgeworth approximation g :
© 0.0025 ~ with higher terms =
& === Binomial distribution 8

0.0000 T T T @ 0.0000 -

4800 4900 5200 u><_| Binomial Normal Edgeworth Improved Edgeworth Improved
with higher terms
Method
. Mean Absolute Error Comparison Mean Squared Error Comparison
10~ ~

[ )

<< 0 1p-12

S 07 =

S 10-8 S 10714
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o : o

Normal Edgeworth Improved Edgeworth Improved Edgeworth Normal Edgeworth Improved Edgeworth Improved Edgeworth
with higher terms with higher terms
Method Method

THE METHOD WITH HIGHER TERMS IS SLOWER FOR LARGE n......
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Binomial Approximations

Comparison of Binomial Distribution and Edgeworth Methods (Number of trials: 100000, probability: 0.5)

Probability Mass Functions Comparison @ Execution Time Comparison

> —— Normal approximation il 1177 g 0.006
£ 0.0021 — Edgeworth approximation =

re) —— Improved Edgeworth approximation F 0.004
g 0.001 __ Improved Edgeworth approximation S

o) with higher terms ‘= 0.002
= = Binomial distribution 8

0.000 , } @ 0.000 .
49600 49800 i Binomial Normal Edgeworth Improved Edgeworth Improved
with higher terms
Method
Mean Absolute Error Comparison Mean Squared Error Comparison

o
1)
&

log10(MSE)

=

1)
i
s

log10(MAE)

Nor'mal Edgeworth Improved Edgeworth Improved iEdgeworth Normal Edgeworth Improved Edgeworth Improved iEdgeworth
with higher terms with higher terms

Method Method

EVEN IMPROVED EDGEWORTH METHODS UNDERPERFORM FOR SOME RANGE.
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Multinomial Approximations

Comparison of Multinomial Distribution and Its Approximations (Number of trials: 5)
Execution Time Comparison

0.40

MCMC is very very accurate,

0.30

o
N
o

but it takes too much time.

Execution Time (s)
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Mean Absolute Error (common logarithm)
Mean Squared Error (common logarithm)
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Edgeworth Normal Poisson MCMC Edgeworth Normal Poisson MCMC Laplace
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Modifying the Homogeneous Proxy



Paper Proxy Distribution

Theoretically derives average distribution for Random CSPs.

Uses that derived form with MaxCut probabilities.

Claims to achieve an acceptable approximation.

Relatively inefficient to compute.
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Our Proxy Distribution

Axoud
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distance

wow!
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Our Proxy

Full QAOA

Our Proxy Distribution:
e Small
e Simple

e Very fast! .




Computational Results



Runtime

Our new proxy requires less runtime .

Runtime of 1 Pseudo-Random Graphs (p=1)
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Expectation

Our proxy demonstrates a similar ability to accurately capture the locations

of the maxima (for p=1).

Beta

314 4

2.89

2.56

2.24

1.92

1.60

1.28

0.96

0.64

0.32

Expectation Proxies from Paper (N=8,M=16)

0.00 -
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True QAOA Expectation (N=8,M=16)
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Expectation Proxies from us (N=8,M=16)
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Approximation Ratio

expectation

approximation ratio = -
maximum cost

Our new proxy is simpler than and comparable to the paper proxy (for
p=1).

Approximation Ratio of 100 Pseudo-Random Graphs (p=1) Approximation Ratio of 100 Pseudo-Random Graphs (p=5)

1.0
I New Proxy I New Proxy
I Paper Proxy I Paper Proxy
0.8 0.8 1
8 2
=] =]
S 0.6 2 0.6
c o
=) A=)
© ©
E £
3 )
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0.2 A 0.2
0.0 - 0.0

6 7 6 7
Number of Nodes (N) Number of Nodes (N) 0



Application to Other Graphs

The current proxy algorithm can only be used with a specific class of graph.

Erd6s—Rényi model Barabasi—Albert model
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Application to Other Graphs

Currently, our proxy and paper proxy fail to accurately capture the location
of the maxima in other graphs.

Expectation Proxies from Paper (N=11,M=10) True QAOA Expectation (N=11,M=10) Expectation Proxies from us (N=11,M=10)

3.14 3.14
2.89 2894
2.56 2.56
2.24 2.24
1.92 192

3 1.60 2 1.60

@ 3
1.28 128 4
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0.00 0.00

0.00 0.32 0.64 0.96 1.28 1.60 1.92 2.24 2.56 2.893.14 0.00 0.32 0.64 0.96 128 1.60 1.92 2.24 2.56 2.893.14 0.00 0.32 0.64 0.96 128 1.60 1.92 2.24 2.56 2.893.14
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Parameterized Proxy Improvements
(ongoing...)



Parameterization of Our Proxy - for Flexibility!

(height squash, peak shift, left flatten, right flatten)

Orig i nal “Approximate" N(15:d,c) for (0, 0, 1, 1) “Approximate"” N(15:d,c) for (58, 0, 1, 1)

Squashed

wow
7350

"Approximate” N(15:d,c) for (0, 3, 1, 1) "Approximate" N(15;d,c) for (0, 0, 3, 3) .
Off-Center Wider

0 30
4 6 8 10 0 2 4 6 8 10 4 4
distance distance



Parameterization of Our Proxy

"Approximate" N(15;d,c) for (31.63, 5.14, 2.42, 0.25) “Approximate" N(15:d,c) for (15.24, 7.93, 1.77, 2.16)

"Approximate" N(15;d,c) for (47.43, 1.23, 0.73, 0.37)

"Approximate" N(15;d,c) for (45.55, 7.91, 0.89, 0.02)
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"Approximate” N(15;d,c) for (58.81, 0.31, 1.78, 1.32)
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“Approximate" N(15;d,c) for (51.3, 0.99, 1.45, 1.6)
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Different parameters at each layer? Qe(c) = Z coeff x Qo_1(¢)N(c;d, ¢)
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Parameterized Normal Proxy

Axoud
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70
60 o
50 5
40
3 30 11[; 8
2 2
20 20 Y
10 25
o0 30
0 2 4 6 8 10
distance

"Approximate™” N(29:d.c) for (5, 50, 1)

20
o
15 5
10 =
2 =8
\
5 25 ~
0 30
0 2 4 6 8 10
distance

Axoud

Axoud

“"Approximate™” N(29;d,c) for (15, 20, 1)

35
30
25
20
15
10

wn

4 6
distance

10

"Approximate™” N(29:d.c) for (15, 5, 4)

35
30
25
20
15
10

n

20

4 6

distance

~

46



Parameterized Proxies

How should we optimize our distributions?
e Fitto multinomial approximation

e Fitto real distribution data

o For each problem instance

e Fitto give best QAOA performance
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e Improve the proxy and extend its applicability to generic problems.

o Parameterized approach
o “Learning” good distributions to use for a problem class

e A “mathematical” explanation of why our proxy is better for p=1.

e Write a paper!
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Takeaways



Key Takeaways

e QAOA parameter sensitivity and optimization challenges

e Improvements in classical methods for precomputing good parameters
o by polishing a parameter-setting approach based on the homogeneous QAOA proxy

e Some results in existing work are potentially misleading

o This issue may be present in multiple existing works!
o That puts into question the usefulness of some those approaches
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Key Takeaways

e The models need to be revised to achieve stronger performance in

general
o Some approaches which could lead to better or more general classical parameter
precomputing methods were not successful yet.

e The existing literature is narrow in the problems that QAOA is applied to.
o  Some existing methods may not generalize well.

e Development of an advanced open-source toolkit for an existing

parameter setting heuristic and many QAOA-related utilitie
o Python-compatible code, Julia backend, GPU-compatible code, many utilities for
QAOA-related tasks

o It makes QAOA research and application more accessible and efficient o
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Q&A



Classical Computer VS Quantum Computer

Classical Computer Quantum Computer
Bit minimal Qubit (=quantum bit)
Oor 1 unit
[y € C?
Always either 0 or 1 state Superposition: v/

[¥) = @0[0) + aa[1)

qoy = (1), 11y = (0\»

Time is proportional to the computational feature Entanglement : qubits affect/ other qublts
complexity.
Error correction is possible. *n qubits :

1Y) = Z ax|x) € c*"
xe{0,1}"
Sometimes exponentially faster «good !

Widely applicable application Specifically applicable
(data processing, software execution etc...) (optimization problems, cryptanalysis etc...)
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Graph 2: Barabasi—Albert Model

e (Characteristics
o Growth: Network expands over time with the addition of new nodes
o Preferential Attachment : New nodes are more likely to connect to nodes
with many connections

e Applications
o Internet : Web page link structures
o Social Networks : Connections between people
o Biological Networks : Protein interactions
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Graph 3: Watts—Strogatz model

e (Characteristics
o High Clustering : Nodes tend to form tightly-knit groups
o Short Path Lengths : Average distance between nodes is short

e Applications
o Social Networks : Social interactions and information spread
o Neuroscience : Brain connectivity and information processing
o Epidemiology : Spread of diseases and viruses
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Erdos—Rényi Model

n/N will be different for different classes of graphs. We focus on Erd6s-Rényi:
Consider all graphs with N vertices and M edges. Pick one randomly.

All N=3, M =2 graphs
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