
Classical Parameter-Setting Strategies 
for the Quantum Approximate 

Optimization Algorithm (QAOA) 

1

August 8, 2024

Academic Mentor:
Phillip Kerger (University of California, Berkeley)

Industry Mentors:
Aruto Hosaka, Isamu Kudo, Tsuyoshi Yoshida
(Mitsubishi Electric Corporation)

Group Members:
Rie Fujii (Ochanomizu University)
Shinichiro Kakuta (Waseda University)
Nadav Kohen (Indiana University)
Spencer Lee (Michigan State University)
Kanon Sakurai (Ochanomizu University)



1. Introduce combinatorial optimization.
2. Introduce the QAOA.
3. Describe the homogeneous proxy.
4. Describe our newly proposed QAOA distribution proxy.
5. Present computational results.
6. Future Work.
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Over view



What can quantum computing and QAOA be 
useful for? 
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Motivation:Why Combinatorial Optimization Problems?

We want to solve Combinatorial Optimization Problems !
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Max Cut
→ to solve the best grouping 
under complex conditions.

⭐ It has important application     
      in computer chip design.

Knapsack Problem

→ to find the best way of 
packing a bag, or truck or 
airplane, that has limited 
space.

Traveling Salesman Problem
→ to find the fastest way to visit all of them.

→ to find the best combination from   
    discrete and finite options



Motivation: Why Quantum Computing?
Quantum computers:

● Impressive in theory   (much faster than classical computer)
● Limited in practice   (high noise, high error ...)
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GOAL: Propose more efficient (and better quality) solutions 

to combinatorial optimization problems  using QAOA

The Quantum Approximate Optimization Algorithm (QAOA) 

doesn’t need many quantum bits (qubits)

↓

suitable for near-term devices

⭐ QAOA solves combinatorial optimization problems!



Motivation: Why QAOA?

⭐QAOA solves combinatorial optimization problems!
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Recent Results:

QAOA is advantageous in terms 
of scaling for certain problems.

↓

QAOA might be faster  

than classical optimization for 
certain problems! Problem Size

Time to Solve vs LABS Problem Size

Blue = Classical
Orange = QAOA

→ QAOA require less computation time.



Motivation: What is MAX-CUT?
With QAOA, we solve the Max Cut Problem:

Divide a graph into two groups to maximize the number of edges connecting 
the two groups.
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Score/cost = Number of edges “cut”



Motivation: Why MAX-CUT?

Problem statement is easy to understand.

8

NP-hard ⇒ Doing well on MaxCut is impressive.

Applying QAOA to MaxCut is simple.

(Effective method has already been established.)

The method is promising for different types of graphs (ex: network)



Background
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Qubits
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Quantum Computing

With n qubits, we can represent a superposition of 2n bitstrings of 1’s and 0’s:
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For n = 3: 



What is the QAOA?

With n qubits, we can represent a superposition of 2n bitstrings of 1’s and 0’s:

In QAOA, each bitstring represents a possible solution.

12High expectation ⇒ high chance of measuring a “good” solution.

Can measure expectation : average “strength” of the solutions:



How to Encode MaxCut?

For N  vertices, we use N qubits. 

Each bit in a bitstring determines which partition to place a vertex in.

13
Measure costs using Ising model:



QAOA Circuit

                “explores”            as we vary parameters                              .

    determines the number of QAOA “layers.”

Physically motivated: more layers ⇒ can get closer to optimal cost.
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But optimizing the 
parameters is harder!

Qubit 1

Qubit 2

Qubit n



Optimizing QAOA Circuit

Simple p=1 case. 

Vary                            until we

find the maximum. 
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Expectation (weighted cost average) vs Parameters



Methodology
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We have a lot of parameters. 

Optimizing them is expensive ! 

Simulating QAOA is expensive !

Real quantum computing is hard!

Figure
The number of parameters we tune.
(Moog synthesizer)
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Parameter Setting



QAOA produces nearly “homogeneous” states, where (basis) states with the 
same cost have similar probability amplitudes.

If the amplitudes are exactly the same, we can reduce the size of our model.

Full QAOA Homogeneous Model
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Homogeneous Proxy
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Before proxy:

After proxy:

SMALLER!

How the Homogenous Proxy Works



20

To calculate the proxy state changes through each layer of QAOA:

# Bitstrings with cost c and distance d 
from bitstrings with cost  

How the Homogenous Proxy Works



21

# Bitstrings with cost c and distance d
from bitstrings with cost  

Generally, the distribution N doesn’t really exist. It approximates the real 
distribution:

Depends on bitstring! たかい!

How the Homogenous Proxy Works



Our Research Objective

Our research is about finding new distributions N to approximate  n.

22

# Bitstrings with cost c and distance d
from bitstrings with cost  



Binomial and Multinomial Approximations

Calculation of 

requires binomial and multinomial probabilities, 
many times for the proxy calculation

→ We want approximations  to speed it up
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Binomial and Multinomial Approximations

The safest method for both of them is to use the

NORMAL DISTRIBUTION .

Other possibilities to approximate:

● Binomial distribution

● Multinomial distribution
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Binomial Approximations
The normal distribution

SAFETY

The Poisson distribution

LIMIT

The Edgeworth expansion method

CORRECTION
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Multinomial Approximations
The normal distribution

The Poisson distribution

The Edgeworth method

The Laplace approximation

The Markov Chain Monte Carlo (MCMC) 26

SAFETY AS WELL

SORT OF LIMIT

ALSO CORRECTION

ESTIMATION FOR SHAPE

SAMPLING METHOD



Binomial Approximations
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RUNTIME OF THE EDGEWORTH SEEMS TO BE SO FAST……



Binomial Approximations
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BUT IT EXCEEDS THE NORMAL FOR SUFFICIENTLY LARGE SIZE.



Binomial Approximations
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FASTER EDGEWORTH METHODS DO EXIST.
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Binomial Approximations

THE METHOD WITH HIGHER TERMS IS SLOWER FOR LARGE n……
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Binomial Approximations

EVEN IMPROVED EDGEWORTH METHODS UNDERPERFORM FOR SOME RANGE.



32

Multinomial Approximations

MCMC is very very accurate, 

but it takes too much time.

→IMPROVEMENTS ONGOING.



Modifying the Homogeneous Proxy
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Paper Proxy Distribution
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Theoretically derives average distribution for Random CSPs.

Uses that derived form with MaxCut probabilities.

Claims to achieve an acceptable approximation.

Relatively inefficient to compute.



Our Proxy Distribution
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simple! fast!

wow!



Our Proxy
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Our Proxy Distribution:
● Small
● Simple
● Very fast!

Full QAOA Homogeneous Model

Our ProxyPaper Proxy



Computational Results
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Our new proxy requires less runtime .
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Runtime



Expectation

Our proxy demonstrates a similar ability  to accurately capture the locations 
of the maxima (for p=1).
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Our new proxy is simpler  than and comparable  to the paper proxy (for 
p=1).
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Approximation Ratio



Application to Other Graphs

The current proxy algorithm can only  be used with a specific class of graph.
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Erdős–Rényi model Barabási–Albert model



Currently, our proxy and paper proxy fail to accurately capture the location 
of  the maxima  in other graphs.
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Application to Other Graphs



Parameterized Proxy Improvements 
(ongoing…)
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Parameterization of Our Proxy - for Flexibility!
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Original

Off-Center

Squashed

Wider

(height squash, peak shift, left flatten, right flatten)



Parameterization of Our Proxy

Different parameters at each layer? 45



Parameterized Normal Proxy
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Parameterized Proxies

How should we optimize our distributions?
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● Fit to multinomial approximation

● Fit to real distribution data
○ For each problem instance

● Fit to give best QAOA performance



Future Work

● Improve the proxy and extend its applicability to generic problems.
○ Parameterized approach
○ “Learning” good distributions to use for a problem class
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● A “mathematical” explanation  of why our proxy is better for p=1.

● Write a paper! 



Takeaways
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Key Takeaways

● QAOA parameter sensitivity  and optimization challenges

● Improvements in classical methods for precomputing  good parameters  
○ by polishing a parameter-setting approach based on the homogeneous QAOA proxy

● Some results in existing work are potentially misleading
○ This issue may be present in multiple existing works!
○ That puts into question the usefulness of some those approaches
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Key Takeaways

● The models need to be revised  to achieve stronger performance in 
general
○ Some approaches which could lead to better or more general classical parameter 

precomputing methods were not successful yet.

● The existing literature is narrow  in the problems that QAOA is applied to.
○  Some existing methods may not generalize well.

● Development of an advanced open-source toolkit  for an existing 
parameter setting heuristic and many QAOA-related utilitie
○ Python-compatible code, Julia backend, GPU-compatible code, many utilities for 

QAOA-related tasks
○ It makes QAOA research and application more accessible and efficient 51
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Q&A
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Classical Computer VS Quantum Computer

Classical Computer Quantum Computer

　　　　　　　　　Bit
  0 or  1　

minimal 
unit 

Qubit (=quantum bit) 

Always either 0 or 1 state Superposition：                 

Time is proportional to the computational 
complexity.

Error correction is possible.

feature Entanglement ：qubits affect other qubits

*n qubits  :  

Sometimes exponentially faster　←good !

Widely applicable 
(data processing, software execution etc…)

application Specifically applicable
(optimization problems, cryptanalysis etc…)
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Graph 2: Barabási–Albert Model

● Characteristics
○ Growth : Network expands over time with the addition of new nodes
○ Preferential Attachment : New nodes are more likely to connect to nodes 

with many connections

● Applications
○ Internet : Web page link structures
○ Social Networks : Connections between people
○ Biological Networks : Protein interactions
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Graph 3: Watts–Strogatz model

● Characteristics
○ High Clustering : Nodes tend to form tightly-knit groups
○ Short Path Lengths : Average distance between nodes is short

● Applications
○ Social Networks : Social interactions and information spread
○ Neuroscience : Brain connectivity and information processing
○ Epidemiology : Spread of diseases and viruses
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All N = 3, M = 2 graphs

n/N will be different for different classes of graphs. We focus on Erdős–Rényi:

Consider all graphs with N vertices and M edges. Pick one randomly.
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⅓ Chance

Erdős–Rényi Model


