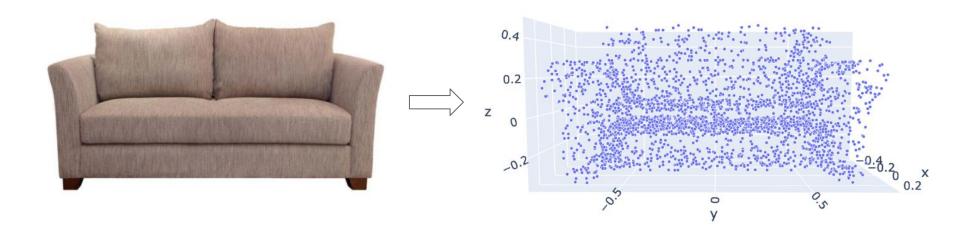
# MsGT: Multi-scale Geometry and Topology Feature Extraction for Point Clouds

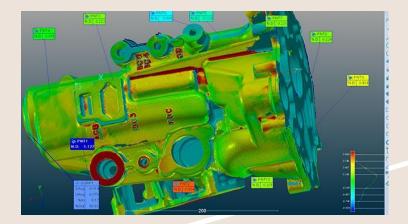
Authors: Kean Fallon | Xiwen Jiang | Melchior N'Bouke | Ryu Ueno | Changyu Zhou

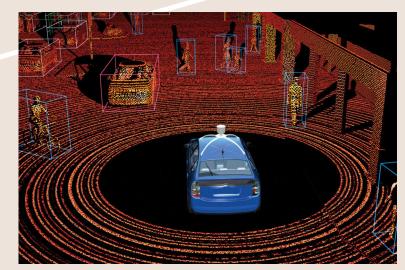

Academic Mentors: Dr. Shunsuke Kano | Dr. Masaki Ogawa

**Industry Mentors:** Dr. Masashi Yamazaki Mr. Akinobu Sasada

#### • Background

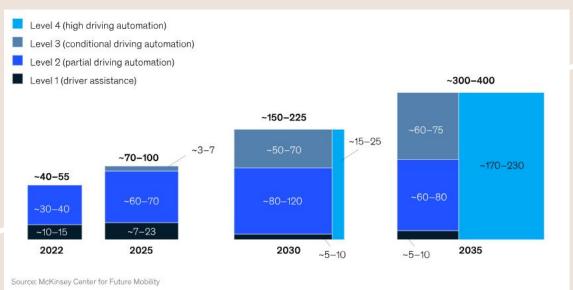
- MsGT Architecture: Our method
- Implementation
- Evaluation
- Future Work


# The Idea




# Many Applications...

- Urban Planning and Infrastructure
- Construction and Design
- Manufacturing/Quality Control
- Autonomous Systems
- Data Collection

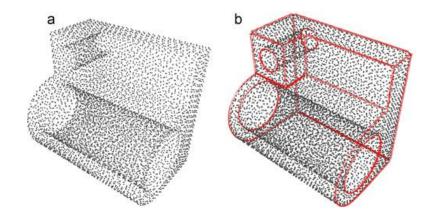






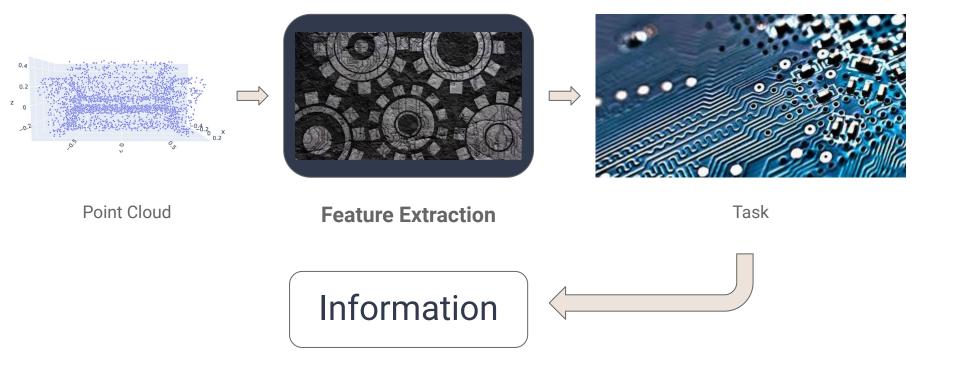

# ...Strong Economic Impact

- New Business Opportunities
- Cost Reduction
- Increased Efficiency
- Asset Management
- Risk Mitigation

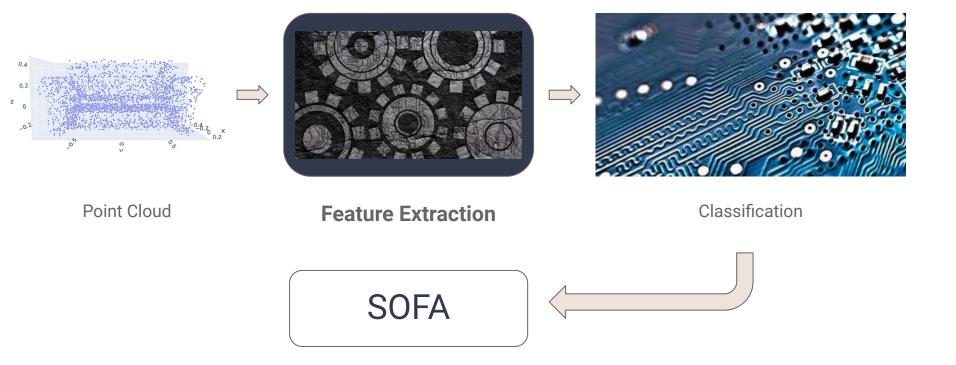


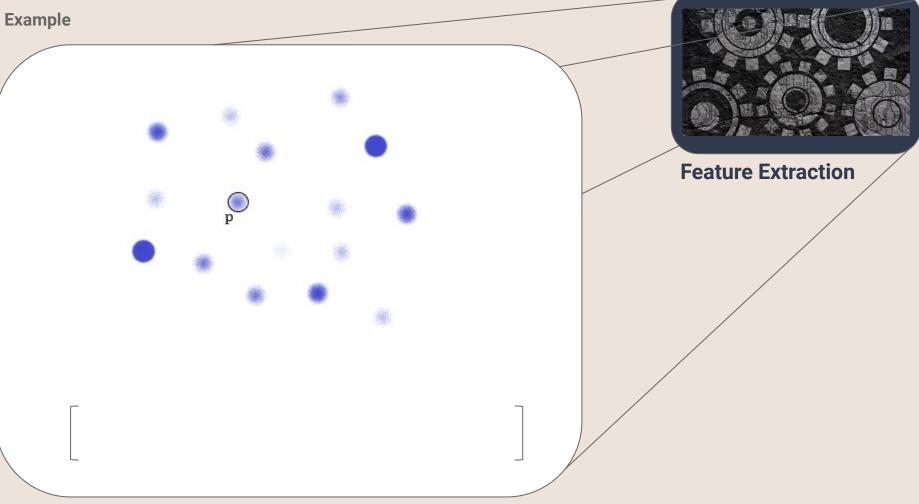

Automated driving: Projected size of industry in billions (USD)

# Point Cloud Processing

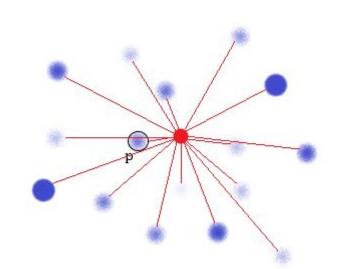

- Point Cloud = Data
- Point Cloud + Processing =

#### **INFORMATION**



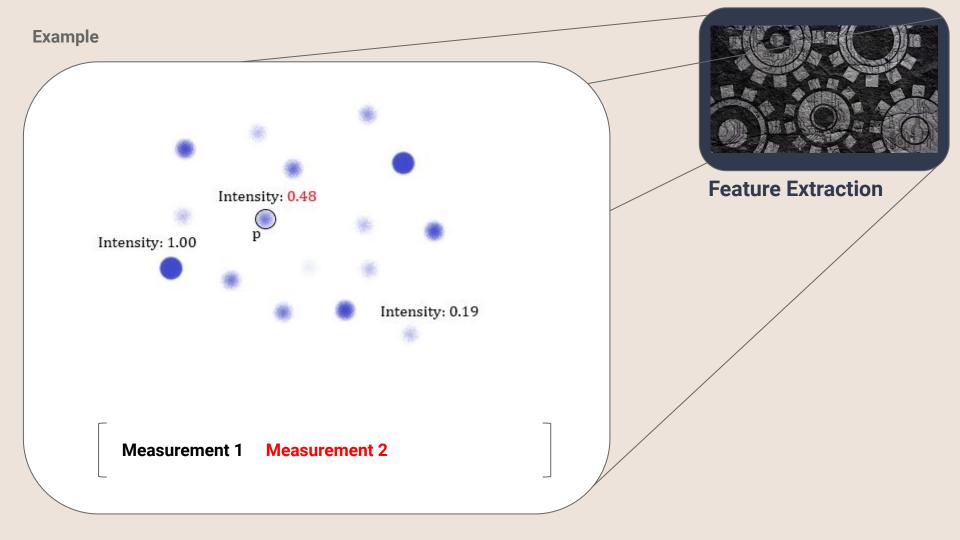


#### **INFORMATION** $\leftarrow$ **"FEATURES"**

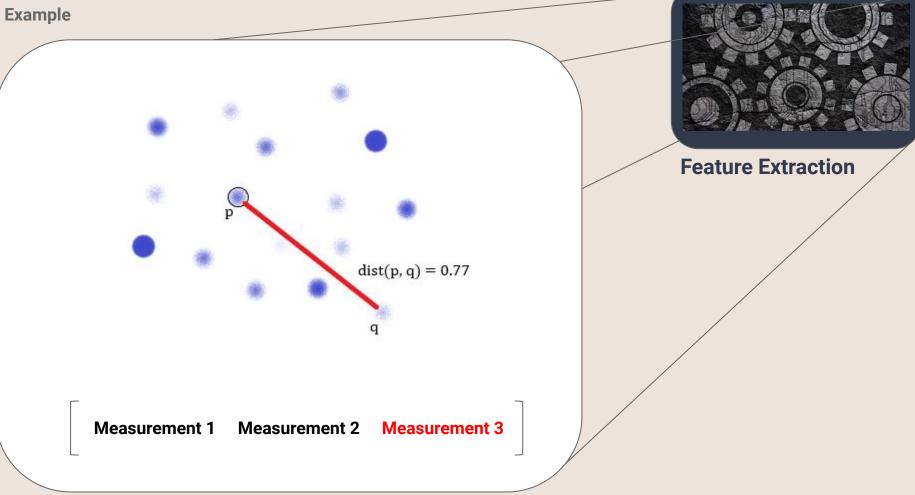
# How It Works

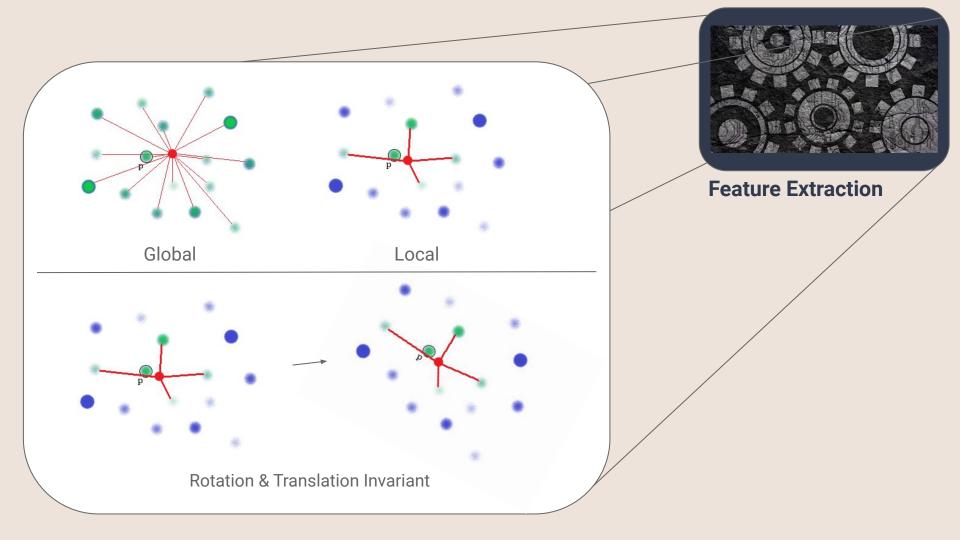



# How It Works







Example




**Feature Extraction** 

Measurement 1







# Two Ways

#### Hand-Crafted Methods

- First on the scene (Old)
- Mathematics and statistics
- Does some tasks well, but is **limited**



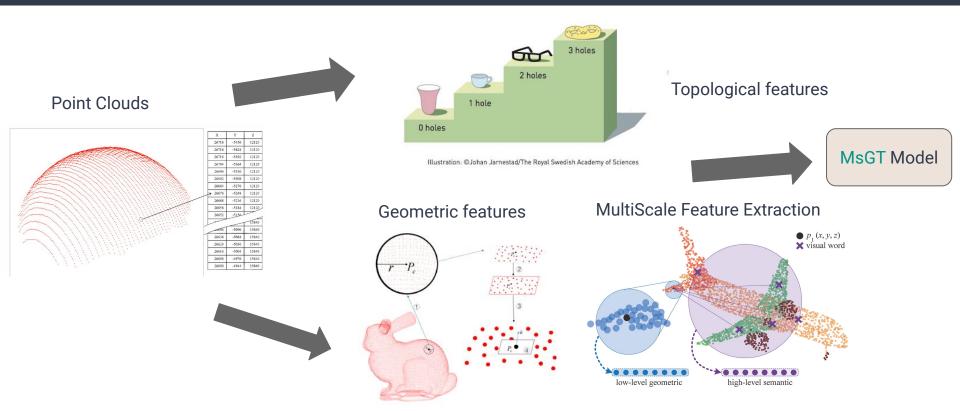
#### Deep Learning Methods

- New (**PointNet** 2017)
- Computer Science and Machine Learning
- Does many tasks **very well**, but is **expensive**



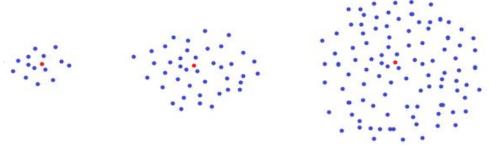
# WHAT THIS TALK IS ABOUT: MsGT: Feature Extraction Method

- Performs better than existing hand-crafted methods
- Introduces novel mathematics for point cloud processing
- Strong accuracy for several data classes
- No deep learning









- Background
- MsGT Architecture: Our method
- Implementation
- Evaluation
- Future Work

# MultiScale Topology and Geometry



# Multi-scale Topology and Geometry

- Extract global features via topology (persistent homology, etc.)
- Extract local features via geometry
- Extract local features at different scales



Concatenate them:

$$feature \ vector = \left[ \begin{array}{c} global \ \middle| \ local_1 \ \middle| \ \cdots \ \middle| \ local_n \end{array} \right]^T$$

Significance: Most methods focus only on topology or geometry, not both.

# Persistent Homology (TDA)

Persistent homology is the flagship tool of topological data analysis (TDA). **Definition:** Persistent homology computes the topological features present in given data.

• Filtration

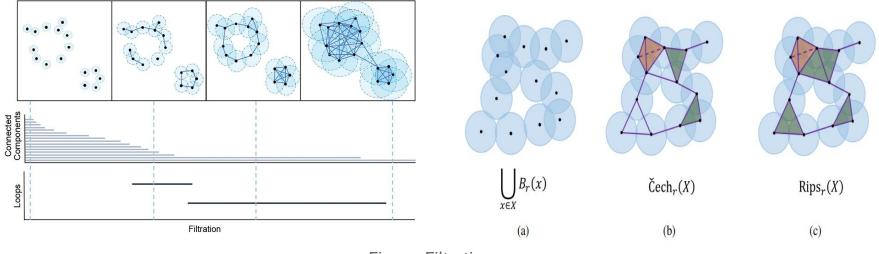
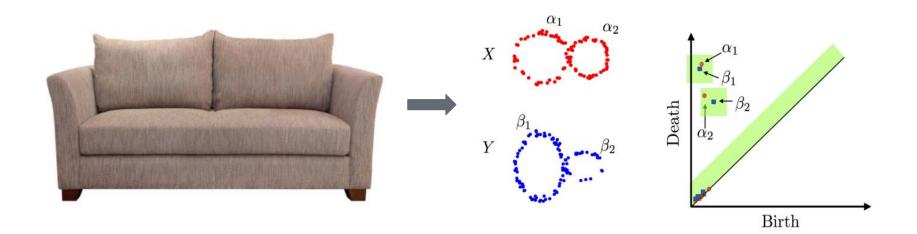
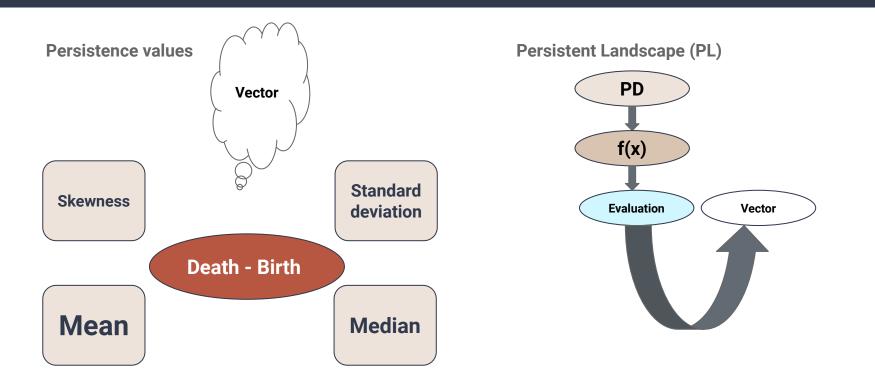
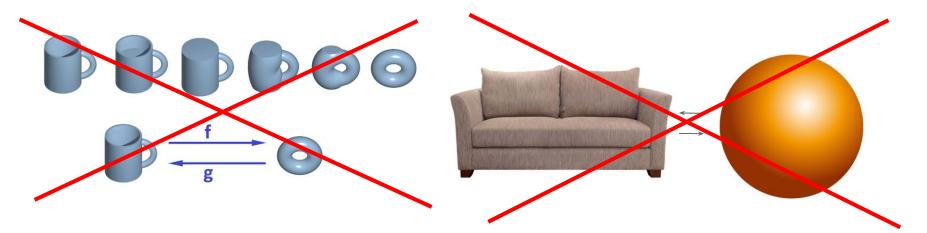



Figure: Filtration

### Persistence Diagram (PD)

• Persistence Diagrams (PD) = (birth, death)

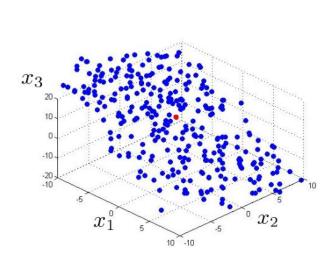



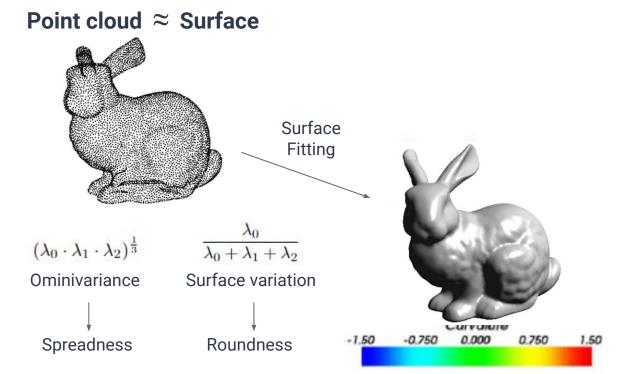


Figure: Persistence Diagram

### Vectorization of the PD



## Geometry: Local Features



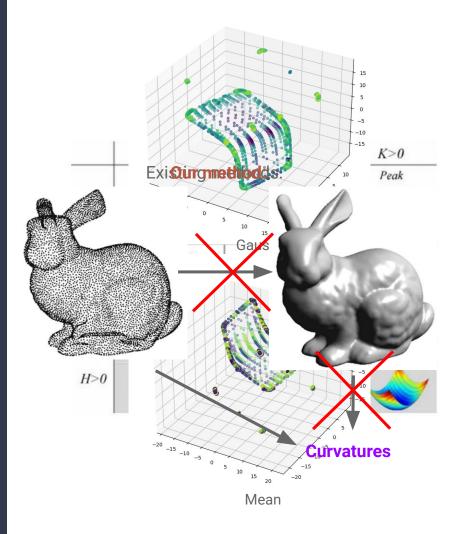




Geometry detects: curvature, distances, etc.

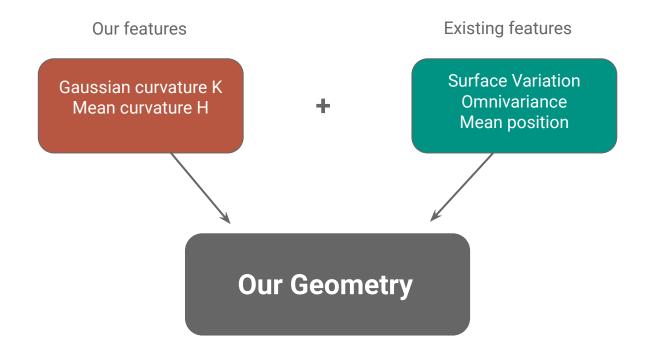
Geometry on point clouds  $\rightarrow$  Local features

### Geometry: Local Features

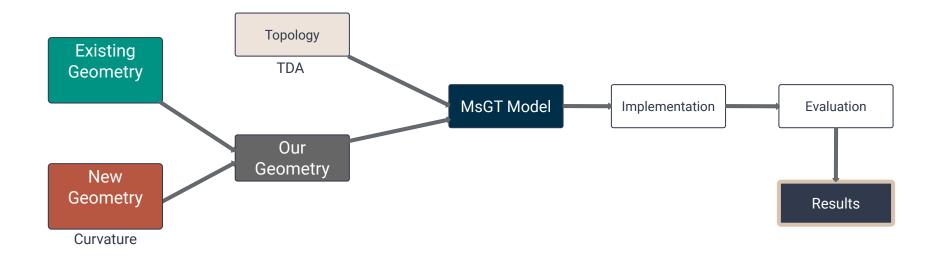





## Geometry: Local Features


#### Gaussian curvature & Mean curvature = Shape of a Surface

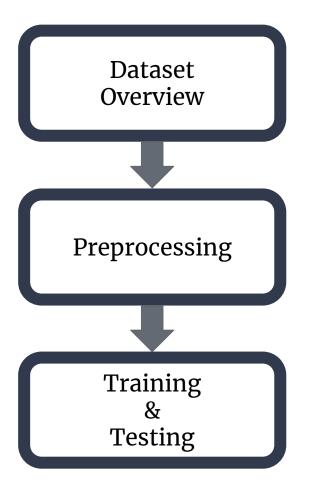
Our Gaussian and Mean curvature on pointcloud:


$$\begin{split} \mathcal{K}_p &= \left(\prod_{i=1}^n k(p,q_i)\right)^{\frac{1}{N}}, \\ \mathcal{H}_p &= \frac{1}{n} \sum_{i=1}^n \left(k(p,q_i) \cdot \frac{\langle \mathsf{n}(q_i), (p-q_i) \rangle}{\|\mathsf{n}(q_i)\| \cdot \|p-q_i\|}\right). \end{split}$$



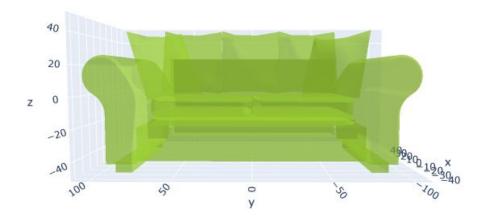
# Geometric features we used:




# Multi-scale Geometry Topology (MsGT)

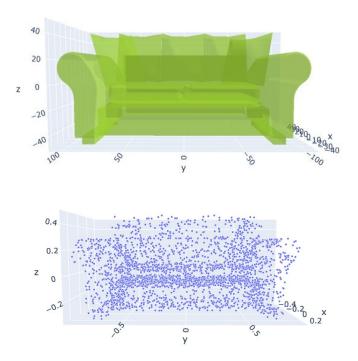


- Background
- MsGT Architecture: Our method
- Implementation
- Evaluation
- Future Work




# Implementation

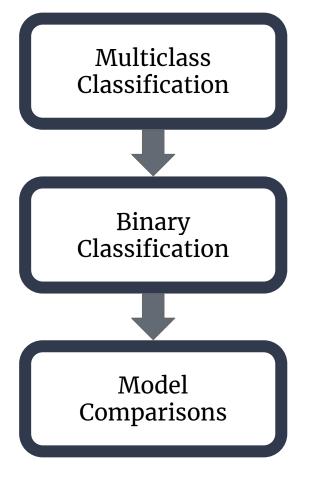


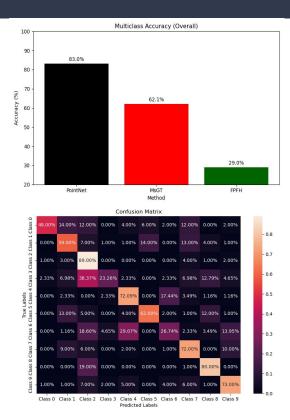

### Dataset Overview

- ModelNet10 dataset
  - Training:
    - Size: 3991
    - Training classifiers
  - Testing:
    - Size: 908
    - Evaluating performance of extracted feature vectors
- A benchmark in 3D object recognition
- 10 object categories



### Preprocessing Steps


- Sampling:
  - o 1024 points
  - ensure consistent input size
- Normalization:
  - rescale the point coordinates
  - lie within a common range
- Noise Addition:
  - introducing small variations
  - mimic real-world scenarios



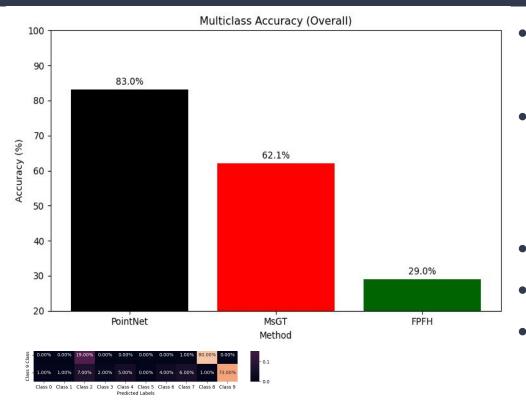

- Background
- MsGT Architecture: Our method
- Implementation
- Evaluation
- Future Work



# Model Evaluation





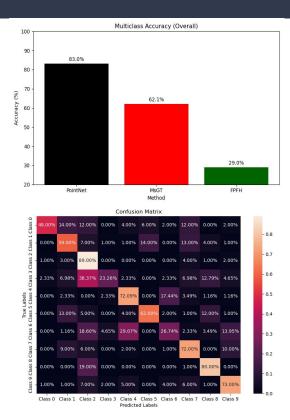

MsGT stands out among other

#### handcrafted methods

• MsGT lags behind **deep learning** 

approaches

- High Accuracy in Specific Classes
- Challenges with Low-Quality Data
- Insight into Misclassifications




MsGT stands out among other

#### handcrafted methods

 MsGT lags behind deep learning approaches

- High Accuracy in Specific Classes
- Challenges with Low-Quality Data
- Insight into Misclassifications



MsGT stands out among other

#### handcrafted methods

• MsGT lags behind **deep learning** 

approaches

- High Accuracy in Specific Classes
- Challenges with Low-Quality Data
- Insight into Misclassifications

True Labels

|                                                                                 | Confusion Matrix |         |         |         |                     |                     |         |         |         |         |
|---------------------------------------------------------------------------------|------------------|---------|---------|---------|---------------------|---------------------|---------|---------|---------|---------|
| Class 9 Class 8 Class 7 Class 6 Class 5 Class 4 Class 3 Class 2 Class 1 Class 0 | 48.00%           | 14.00%  | 12.00%  | 0.00%   | 4.00%               | 6.00%               | 2.00%   | 12.00%  | 0.00%   | 2.00%   |
|                                                                                 | 0.00%            | 59.00%  | 7.00%   | 1.00%   | 1.00%               | 14.00%              | 0.00%   | 13.00%  | 4.00%   | 1.00%   |
|                                                                                 | 1.00%            | 3.00%   | 89.00%  | 0.00%   | 0.00%               | 0.00%               | 0.00%   | 4.00%   | 1.00%   | 2.00%   |
|                                                                                 | 2.33%            | 6.98%   | 38.37%  | 23.26%  | 2.33%               | 0.00%               | 2.33%   | 6.98%   | 12.79%  | 4.65%   |
|                                                                                 | 0.00%            | 2.33%   | 0.00%   | 2.33%   | 72.09%              | 0.00%               | 17.44%  | 3.49%   | 1.16%   | 1.16%   |
|                                                                                 | 0.00%            | 13.00%  | 5.00%   | 0.00%   | 4.00%               | 62.00%              | 2.00%   | 1.00%   | 12.00%  | 1.00%   |
|                                                                                 | 0.00%            | 1.16%   | 18.60%  | 4.65%   | 29.07%              | 0.00%               | 26.74%  | 2.33%   | 3.49%   | 13.95%  |
|                                                                                 | 0.00%            | 9.00%   | 6.00%   | 0.00%   | 2.00%               | 0.00%               | 1.00%   | 72.00%  | 0.00%   | 10.00%  |
|                                                                                 | 0.00%            | 0.00%   | 19.00%  | 0.00%   | 0.00%               | 0.00%               | 0.00%   | 1.00%   | 80.00%  | 0.00%   |
|                                                                                 | 1.00%            | 1.00%   | 7.00%   | 2.00%   | 5.00%               | 0.00%               | 4.00%   | 6.00%   | 1.00%   | 73.00%  |
|                                                                                 | Class 0          | Class 1 | Class 2 | Class 3 | Class 4<br>Predicte | Class 5<br>d Labels | Class 6 | Class 7 | Class 8 | Class 9 |

• MsGT stands out among other

#### handcrafted methods

- MsGT lags behind deep learning
  - approaches

- 0.8

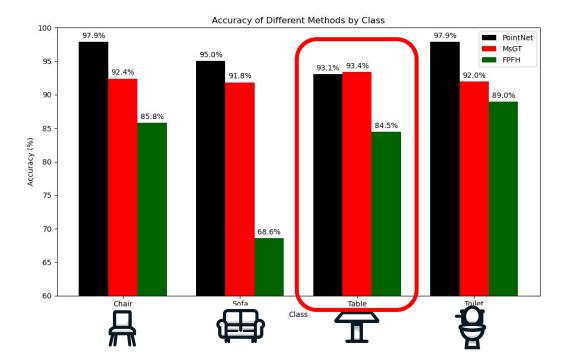
- 0.7

- 0.6

- 0.5

- 0.4

- 0.3


- 0.2

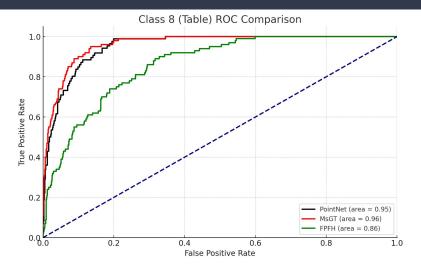
- 0.1

- 0.0

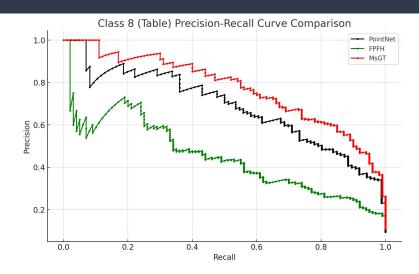
- High Accuracy in Specific Classes
- Challenges with Low-Quality Data
- Insight into Misclassifications

#### Binary Classification and Model Comparison



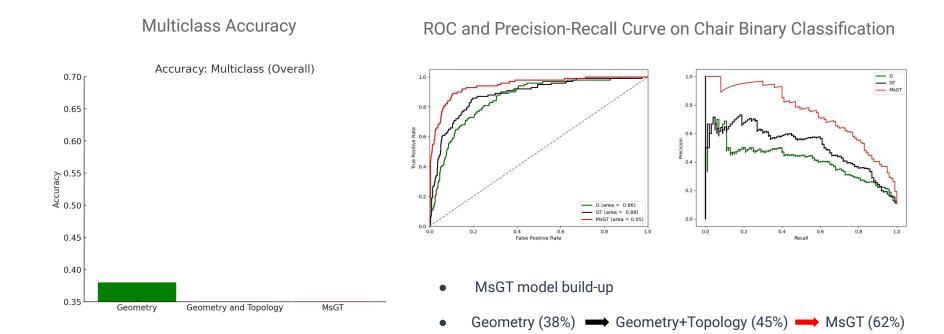

- High Accuracy Across Classes
- Superior to Other Handcrafted

#### Methods


• Exceptional Performance in Table

Class

### Table Binary Classification: MsGT > PointNet > FPFH




- The ROC curve for MsGT is close to the top left corner.
- AUC = 0.96: high effectiveness in distinguishing between positive and negative samples.



- MsGT Precision-Recall Performance
- Effectively detect the majority of positive samples while keeping false positives low

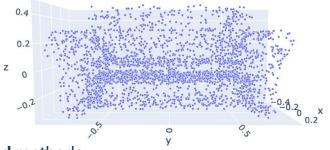
#### Geometry < Geom+Topo < MsGT Comparisons



#### **Geometry Features Comparison**

**Chair Binary Classification** Precision-Recall Curve: Chair **ROC Curve: Chair** 1.000 Gaussian and Mean 1.0 Gaussian and Mean 1.0 -Other pairs 0.975 0.8 0.950 0.925 0.6 0.900 0.4 0.875 0.850 0.2 0.2 0.825 0.0 Gaussian and Mean 0.800 0.0 [7,8] [0,2] [0,3] [0,6] [2,6] [3, 6] [2, 3] [3, 5] [5, 6] [0, 5] [2, 5] 0.0 0.2 0.8 0.0 0.2 0.4 1.0 0.4 0.6 0.8 Recall False Positive Rate

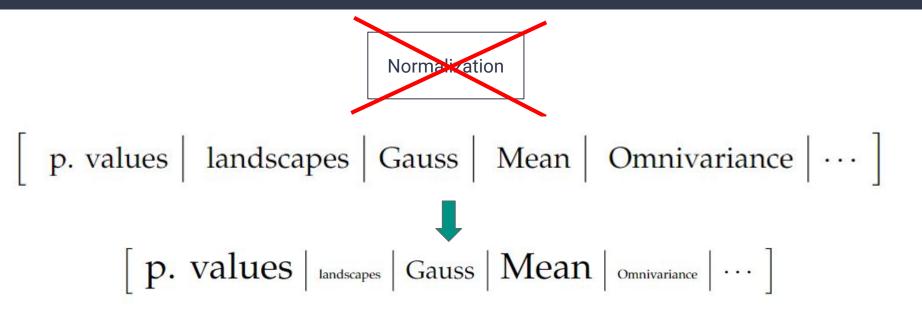
- Our novel Geometric Feature (Red): Gaussian and Mean curvature
- Other pairs of some existing geometric features (Black)
- Gaussian and Mean > other geometry methods


### Conclusion

#### • MsGT Method:

- **Combines** topological and geometric features.
- **Cost-effective** compared to deep learning.
- Performance Comparison:
  - Superior to **PointNet** in specific tasks.
  - Significantly better than FPFH and other **handcrafted** methods.

#### • Key Advantages:

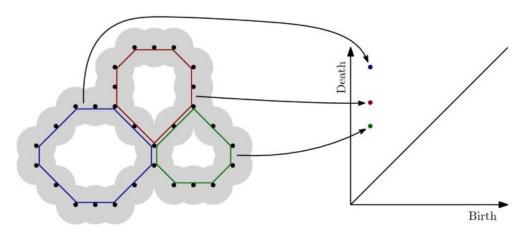

- **High accuracy**, especially in challenging categories (e.g., table classification).
- Balanced **integration** of topological and geometric strengths.
- Practical Implications:
  - Low cost and high efficiency for various applications
- Model Limitation:
  - Misclassifying certain classes in multiclass classification
  - Computational time



- Background
- MsGT Architecture: Our method
- Implementation
- Evaluation
- Future Work



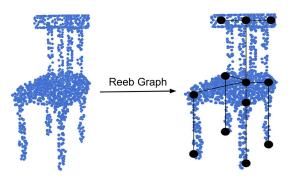
### Future Work: Weighting

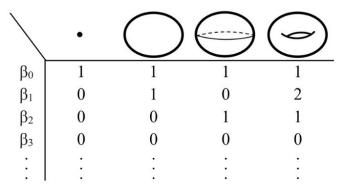



Based on accuracy correlation

## Future Work: Topology Improvement

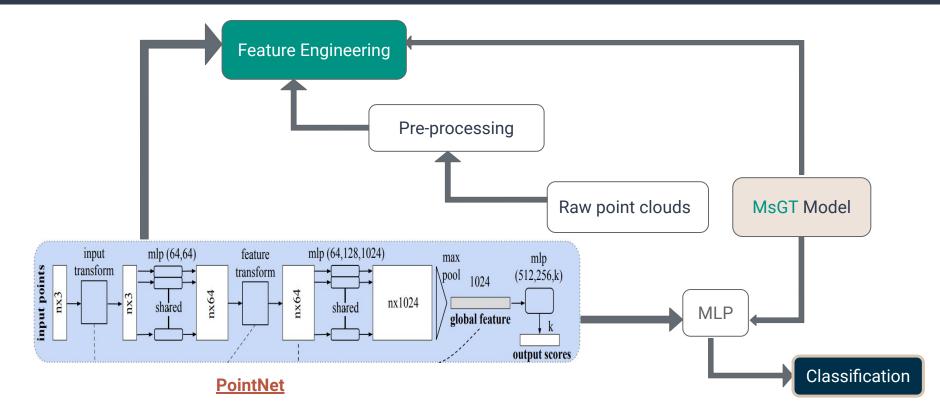
#### **Vectorization of Persistence Diagram**


- Persistent Entropy
- Persistence Images




## Future Work: Topology Improvement

Other Topological features


- Betti numbers
- Euler characteristics
- Reeb graphs





| Name               | Image | Vertices<br>V | Edges<br><i>E</i> | Faces<br><i>F</i> | Euler characteristic:<br>V - E + F |
|--------------------|-------|---------------|-------------------|-------------------|------------------------------------|
| Tetrahedron        |       | 4             | 6                 | 4                 | 2                                  |
| Hexahedron or cube | 1     | 8             | 12                | 6                 | 2                                  |
| Octahedron         |       | 6             | 12                | 8                 | 2                                  |
| Dodecahedron       |       | 20            | 30                | 12                | 2                                  |
| Icosahedron        |       | 12            | 30                | 20                | 2                                  |

## Future Work: Combination with PointNet



## Thank you!

## **MITSUBISHI**







#### 東北大学 数理科学共創社会センター

Mathematical Science Center for Co-creative Society, Tohoku University



# Questions?

## Appendix

#### • FPFH Multiclass Classification

|           |         |         |         | C       | Confusio | n Matri | х       |         |         |         |
|-----------|---------|---------|---------|---------|----------|---------|---------|---------|---------|---------|
| Class 0   | - 0.00% | 66.00%  | 0.00%   | 0.00%   | 12.00%   | 4.00%   | 0.00%   | 12.00%  | 6.00%   | 0.00%   |
| Class 1   | 0.00%   | 89.00%  | 0.00%   | 0.00%   | 0.00%    | 0.00%   | 0.00%   | 8.00%   | 3.00%   | 0.00%   |
| Class 2   | - 0.00% | 53.00%  | 8.00%   | 0.00%   | 1.00%    | 8.00%   | 0.00%   | 5.00%   | 25.00%  | 0.00%   |
| Class 3   | 0.00%   | 52.33%  | 4.65%   | 0.00%   | 3.49%    | 1.16%   | 0.00%   | 18.60%  | 19.77%  | 0.00%   |
| Class 4   | - 1.16% | 10.47%  | 0.00%   | 0.00%   | 56.98%   | 5.81%   | 0.00%   | 24.42%  | 1.16%   | 0.00%   |
| Class 5   | - 1.00% | 19.00%  | 4.00%   | 0.00%   | 16.00%   | 41.00%  | 0.00%   | 14.00%  | 5.00%   | 0.00%   |
| Class 6   | 0.00%   | 18.60%  | 8.14%   | 0.00%   | 37.21%   | 5.81%   | 1.16%   | 26.74%  | 1.16%   | 1.16%   |
| Class 7   | - 0.00% | 74.00%  | 0.00%   | 0.00%   | 5.00%    | 1.00%   | 0.00%   | 18.00%  | 2.00%   | 0.00%   |
| Class 8   | - 0.00% | 30.00%  | 13.00%  | 0.00%   | 0.00%    | 1.00%   | 0.00%   | 1.00%   | 55.00%  | 0.00%   |
| Class 9 ( | - 0.00% | 42.00%  | 0.00%   | 0.00%   | 4.00%    | 3.00%   | 0.00%   | 50.00%  | 0.00%   | 1.00%   |
|           | Class 0 | Class 1 | Class 2 | Class 3 | Class 4  | Class 5 | Class 6 | Class 7 | Class 8 | Class 9 |

Predicted Labels

**Confusion Matrix** 

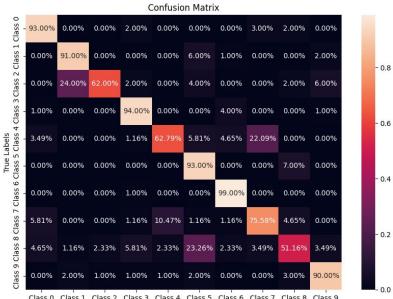
- 0.8

- 0.7

- 0.6

- 0.5

- 0.4


- 0.3

- 0.2

- 0.1

0.0

#### • PointNet Multiclass Classification



Class 0 Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 Predicted Labels

## Appendix

Geom Only Multiclass Classification

- 0.8

- 0.7

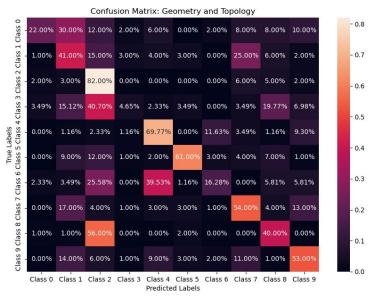
- 0.6

- 0.5

- 0.4

- 0.3

0.2


- 0.1

0.0

#### Geom + Topo Multiclass Classification

|                         |         |         | C       | onfusio | n Matrix | : Geom  | etry On | ily     |         |         |
|-------------------------|---------|---------|---------|---------|----------|---------|---------|---------|---------|---------|
| Class 2 Class 1 Class 0 | - 6.00% | 28.00%  | 30.00%  | 0.00%   | 0.00%    | 4.00%   | 0.00%   | 10.00%  | 10.00%  | 12.00%  |
|                         | - 1.00% | 33.00%  | 20.00%  | 0.00%   | 4.00%    | 4.00%   | 0.00%   | 27.00%  | 8.00%   | 3.00%   |
|                         | - 2.00% | 4.00%   | 83.00%  | 0.00%   | 0.00%    | 1.00%   | 2.00%   | 3.00%   | 3.00%   | 2.00%   |
| Class 3                 | - 0.00% | 12.79%  | 54.65%  | 3.49%   | 2.33%    | 3.49%   | 1.16%   | 3.49%   | 12.79%  | 5.81%   |
| Class 4 (               | - 0.00% | 2.33%   | 4.65%   | 1.16%   | 58.14%   | 1.16%   | 9.30%   | 2.33%   | 10.47%  | 10.47%  |
| Class 5                 | - 0.00% | 2.00%   | 18.00%  | 0.00%   | 1.00%    | 56.00%  | 4.00%   | 7.00%   | 9.00%   | 3.00%   |
| Class 6                 | - 0.00% | 5.81%   | 29.07%  | 2.33%   | 36.05%   | 1.16%   | 12.79%  | 1.16%   | 4.65%   | 6.98%   |
| Class 7                 | - 0.00% | 13.00%  | 15.00%  | 0.00%   | 1.00%    | 4.00%   | 4.00%   | 55.00%  | 1.00%   | 7.00%   |
| Class 8                 | - 0.00% | 1.00%   | 71.00%  | 0.00%   | 1.00%    | 3.00%   | 0.00%   | 0.00%   | 24.00%  | 0.00%   |
| Class 9                 | - 1.00% | 12.00%  | 13.00%  | 0.00%   | 3.00%    | 3.00%   | 0.00%   | 15.00%  | 2.00%   | 51.00%  |
|                         | Class 0 | Class 1 | Class 2 | Class 3 | Class 4  | Class 5 | Class 6 | Class 7 | Class 8 | Class 9 |

Confusion Matrix: Geometry Only



Class 0 Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 Predicted Labels

## Appendix

| Classifier | Multi-class | Binary  |         |         |         |  |  |  |
|------------|-------------|---------|---------|---------|---------|--|--|--|
|            |             | Chair   | Sofa    | Table   | Toilet  |  |  |  |
| MsGT       | 62.115%     | 92.401% | 91.850% | 93.392% | 91.960% |  |  |  |
| PointNet   | 83.040%     | 97.907% | 95.044% | 93.062% | 97.907% |  |  |  |
| FPFH       | 29.000%     | 85.793% | 68.612% | 84.471% | 88.987% |  |  |  |

Table 1: Classification Results for Different Classes and Feature Extraction Models

| Classifier             | Accuracy | Recall | Prec.  | F1     |
|------------------------|----------|--------|--------|--------|
| Logistic Regression    | 0.6441   | 0.6441 | 0.6391 | 0.6300 |
| Random Forest          | 0.5743   | 0.5743 | 0.5516 | 0.5407 |
| Ridge                  | 0.4894   | 0.4894 | 0.4669 | 0.4664 |
| Naive Bayes            | 0.4715   | 0.4715 | 0.5206 | 0.4582 |
| Support Vector Machine | 0.4110   | 0.4110 | 0.4934 | 0.3432 |

Table 2: Performance comparison of classification models on MsGT features.