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1 Introduction

Point clouds are a collection of finitely many points in three-dimensional space, where each point
represents an objects position. Point clouds are typically generated by 3D scanning devices like LiDAR
(Light Detection and Ranging) scanners, depth cameras, or photogrammetry techniques. They can be
converted into the familiar formats of mesh models, CAD models, or NURBS surface models through a
process known as surface reconstruction. As the output of 3D scanning processes, point clouds offer a rich
source of 3D spatial information that is vital for object detection across various domains.

One crucial step involved in object detection application is processing point clouds to extract feature
vectors. These feature vectors contain information that a model then uses to classify, segment, or perform
object detection on the point cloud with.

In the state of research today, point clouds are processed by either hand-crafted or deep learning
methods. For the former, mathematical rules are designed and then applied to extract feature vectors
which are then fed into an appropriate classifying, segmenting, or object detection model. For the latter,
we can either directly process point clouds or convert point clouds into mesh, voxel or multi-view data
and process the converted data. Both have strengths and weaknesses: hand-crafted methods do not need
as much data to work well, yet do not perform as well as deep learning methods, while deep learning
methods perform well but require large, and notably expensive, data sets to train on. However, the large
and expensive data sets required for deep learning methods to train is cost-prohibitive to many who wish
to use them. In this report we introduce a novel hand-crafted feature vector extraction method called
Multi-scale Geometry and Topology (MsGT). Since hand-crafted methods don’t require large data sets
to train on, we circumvent the associated data costs. Moreover, while not as accurate as deep learning
methods, hand-crafted methods are still effective enough to be used for a variety of nontrivial tasks. In
the following section, we provide all of the necessary background information, making explicit much of
what we have considered to this point. If the reader is familiar with point cloud processing and the state
of existing research, they may pass over this section with little consequence.

2 Background

2.1 Preliminaries

Definition 2.1. A point cloud is a set of finitely many points in three-dimensional Euclidean space.

Figure 1: Examples of point clouds

Intuitively, we just consider a point cloud as a collection of points in R3, identifying them with vectors
when necessary for computing things such as inner products. If desired, one could include m different
attributes, such as color or intensity, by taking the collection of points to be in R3+m. However, we consider
point clouds to be defined exactly as in definition 3.1 and that convention will remain for the rest of this
document.
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Encountering a neural network is inevitable when working with 3D data classification, hence is the other
essential architecture that must be explained.

Definition 2.2. A neural network is a directed graph with vertices called “nodes” through which an input
is passed, resulting in an output.

Neural networks are modeled on the human brain, hence the neural in neural network. Each node
generally consists of an activation function composed with another function. To achieve the desired result,
a loss function for the output is created and the parameters that define the node functions are tuned by
various methods, such as gradient descent with respect to the loss function. Rather than attempt a more
rigorous definition then the one above, we provide an example.

Input
layer

Hidden
layer

Output
layer

x1

x2

x3

y1

y2

Figure 2: A basic single-layer neural network.

Example 2.3. Figure 2 shows a basic single-layer neural network with three inputs, four nodes, and two
outputs. The layers that contain the nodes (or “neurons”) are called hidden layers and a network with many
hidden layers is referred to as deep. In this example, each input is passed to each node. The ith node
receives each of the inputs and constructs a linear combination

φi(x1, x2, x3) = ai1x1 + ai2x2 + ai3x3 + bi

where ai1, ai2, and ai3 are the weights and bi is the bias. Afterwards, the linear combination is fed
into an activation function R such as a sigmoidal function or a rectified linear unit (ReLU). The result
R(φi(x1, x2, x3)) is then sent to each of the subsequent nodes where a similar process happens, and so on.
At the end, the loss between expected output and actual output is calculated and the parameters (i.e. the
collective weights and biases) are adjusted to improve the model. The process then repeats.

Neural networks are at the forefront of data science. There is a large selection of literature available on
the practicality of neural networks and the theory behind them, including a host of universal approxima-
tion theorems. Notably, they are often applied to the 3D data processing applications that we are interested
in: classification, segmentation, and 3D object detection.

Object classification is the most straightforward of the three applications above, as its only task is to
provide a category (or classification) of a point cloud, which the method selects from a list that it has been
trained on. Segmentation is the process of classifying multiple objects within a point-cloud, and therefore
is more difficult. Finally, 3D object detection is the task of constructing bounding boxes around separate
objects in a point cloud. Object detection is the most interesting and arguably useful of these applications,
and so unsurprisingly the most difficult. The information required to perform any of the above three
applications is contained in what is called a feature vector.
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Figure 3: Point cloud classification and segmentation.

Definition 2.4. A feature vector of a point cloud is a vector v ∈ Rn whose n components represent different
numerical data corresponding to the point cloud.

For example, a feature vector v of a colorized point cloud could include 6 data entries: the first three
its (x, y, z) coordinates relative to some reference, and the second three it’s RGB values (r, g, b). The
concatenated vector v = (x, y, z, r, g, b) lives in R6 and provides a simple example of a feature vector.

As previously discussed in the problem statement, the objects of interest in this document are feature
vectors. Our goal in this project is to design a hand-crafted feature vector extractor. In other words, we want
to design a mathematical algorithm that takes in point cloud information, applies mathematics in a unique
way, and provides a feature vector for input into an existing model. We select an example of such a process
which can be found in [62].

Example 2.5. Given a point cloud, fix a radius r and select a point p. In the sphere of radius r and center p,
compute the normals ni (with respect to the sphere) of each point pi contained therein, then reorient them
in a consistent manner. Next, find the source point ps and target point pt by the following:

if arccos⟨ni, pj − pi⟩ ≤ arccos⟨nj , pi − pj⟩ then set ps = pi and pt = pj , else ps = pj and pt = pi.

Set u = ns, v = (pt − ps)× u, and w = u× v (this collection is called a Darboux frame). The four geometric
features collected are:

f1 = v · nt

f2 = ∥pt − ps∥
f3 = u · (pt − ps)/f2

f4 = arctan(w · nt, u · nt)

While there is more to the process in [62], this provides a short and sufficient example of hand-crafted
feature extraction.

A notable property of point clouds is that they contain the same geometric information regardless of
the perspective you view them from. This property also creates an obstacle that must be overcome to
effectively process the data in point clouds and extract a feature vector.

Definition 2.6. The Euclidean group of R3, denoted E(3), is the collection of all rotations, reflections, and
translations of R3. In other words

E(3) ∼= O(3)⋊ T (3) ←→ E(3)/T (3) ∼= O(3)

where O(3) is the orthogonal group and T (3) is the translational group. To put it another way, the Eu-
clidean group E(3) is the collection of all transformations of R3 that preserve distances between points.
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The motivation for including this definition is the following: in processing point clouds, it is required
that the processing does not change after point clouds are rotated, reflected, or the point of view is shifted.
In other words, point cloud processing needs to be invariant under applications of the elements of E(3)

on the point cloud. It should be readily seen that this is a necessary requirement for a functioning point
cloud processor.

A final piece of point cloud information that must be respected is invariance under a relabeling. In
other words, the feature extraction method which processes a point cloud must not depend on the order
in which it reads the points. Again, it does not take much thought to see why this is an important feature.

To summarize, any feature extraction method (hand-crafted or not) M must adhere to the following
two rules:

1. M is invariant under E(3)

2. M is does not depend on the order of its inputs.

These principles have guided existing research and consequently must guide ours as well.

2.2 State of Current Research

Point cloud feature extraction can be separated into two primary methods: feature extraction based
on deep learning and hand-crafted feature extraction. Deep learning methods are the most recent and
currently most successful methods. This is not surprising due to the power of deep learning models in
many modern day applications. Hand-crafted methods are nonetheless still useful, even while being out-
performed by deep learning models, due to their ability to work on small data sets while still performing
effectively.

2.2.1 Deep Learning Methods

While not the focus of our statement, much of current research focuses on processing point clouds
directly via deep learning. Therefore, we will (briefly) acknowledge and summarize deep learning methods
here.

In 2017, Qi et al. introduce PointNet in their landmark paper [51]. PointNet is a deep learning method
that applies a transformer network module to point clouds before aggregating the point features to a single
global feature vector with a symmetric max pooling function.

Figure 4: The PointNet architecture.

The key features of PointNet are its T-Net module and symmetric aggregation function, which provide
solutions to the E(3) invariant and unordered properties of point clouds, respectively. Before PointNet,
deep learning models had not been applied to point clouds due to the difficulties in reconciling these
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properties. PointNet, its successors PointNet++ [52] and PointNeXt [53], and their contemporaries, such
as in [3, 80, 78, 81, 72, 45, 71, 44, 25] have all successfully handled these obstacles and opened the door to
applying deep learning on point clouds with significant success.

However, the training necessary for deep learning methods requires datasets that are expensive to
generate. In particular, point cloud datasets must be manually collected and annotated by hand. Given
the large dataset required, this process requires substantial resources which may not be readily available
to many who wish to use it. For this reason, hand-crafted methods still have relevance as a way of
circumventing resource restrictions, even with the greater success of deep learning methods.

2.2.2 Hand-Crafted Methods

Hand-crafted feature extraction has a longer history in 3D data collection, with results dating back at
least as early as 1998 [32]. However, the success of PointNet in 2017 has in turn commanded the attention
of researchers towards deep learning models. As a result, work in hand-crafted feature extraction has
slowed significantly.

As opposed to directly processing via a neural network, hand-crafted feature extraction processes point
clouds by detecting geometric structures mathematically, such as distances between points, normal vectors,
and angles, among others. It then reports them in a feature vector, sometimes after a classification process
such as binning. Existing results in hand-crafted feature extraction can be classified into three different
categories: local feature extraction, global feature extraction, and a combination of the two (hybrid feature
extraction). Here we provide a brief summary of the results in each, including some of their strengths and
weaknesses.

Local Feature Extraction. Local feature extractors are designed to pull local information from points,
such as surface curvature. These local feature extractors can be further divided into two categories: those
which use a local reference frame (LRF) and those which do not.

The former establishes a LRF for a given point, partitions the neighborhood around the point with
respect to the LRF, and then processes the point cloud by observing spatial distribution, geometric prop-
erties, or other relationships. It is common in spatial distribution methods to perform eigenanalysis on
the spherical support of a point and spectral decomposition is used frequently. Also ubiquitous is the
identification of the covariance matrix (weighted or unweighted) of a point, i.e. the symmetric, positive
semi-definite matrix indexed by the points in a neighborhood whose ij-th entry corresponds to the covari-
ance between points pi and pj . Examples of these methods are [68, 65, 29, 6, 70]. LRF-based methods that
apply geometric properties are less common but still exist: in fact example 3.5 is an example of such a
method.

Non-LRF methods do not use reference frames unique to the image itself. In particular, they pull
information from points outside of a given point neighborhood to provide more context, which in turn
gives a more rigorous description of the features. One type of non-LRF method, called signature-based,
involves this description being compressed into a signature which is then compared to signatures of other
patches/neighborhoods. The other types are statistical methods, e.g. histogram descriptors.

Histogram descriptors are a type of feature representation commonly used in computer vision and pat-
tern recognition tasks. These descriptors capture the distribution of certain properties or characteristics of
data points within a specified neighborhood or region. In the context of 3D laser range data classification,
histogram descriptors are utilized to encode information about the surrounding points or normals relative
to a query point.

Histogram descriptors maintain a histogram that quantifies the occurrence or distribution of specific
properties of neighboring points. By binning the values of these properties into a histogram, the descriptor
provides a compact and informative representation of the local geometry or shape features around a point.
This allows for effective discrimination between different classes or categories of objects based on their
spatial characteristics.

6
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Examples of non-LRF methods can be found in [32, 43, 63, 36, 42, 67, 50, 56, 57, 61, 62, 39, 30, 19, 8, 12]
with statistical methods found in [21, 20, 69, 79, 83].

Global and Hybrid Feature Extraction. Global feature extraction methods return a feature vector for
an entire point cloud, which can be useful for tasks such as object classification. Similarly to local feature
extraction, global feature extractors tend to extract either spatial distribution information or geometric
attributes. Although different than the local feature extractors, methods that fall into this category are
similar in spirit. These include methods such as Fourier descriptors, Hu moments, Bag-of-Visual-Words,
contour-based methods, and more (see [58, 46, 41, 40, 38, 4, 76, 17]).

As one may expect, hybrid feature extraction combines properties of global and local feature extractors
to aggregate local and global information for data processing tasks. Therefore, they would be useful in
tasks (e.g. segmentation) where both global and local information is desired. Hybrid feature extractors
can be found in [73, 27, 24, 48].

3 Our approach

MsGT extracts features using two core concepts: Multi-scaled Geometry, and Topology. In particular,
MsGT provides new, novel geometric features that show promise in the field of pointcloud classification.
After collecting local geometric features at n different scales and then topological features globally, our
method concatenates them, resulting in something of the form:

feature vector =
[

global local1 · · · localn
]T

Afterwards, the vector is normalized and then individual segments are weighted to improve accuracy.
For more on our explicit constructions, see section 4.

3.1 Geometry

Our novel geometric features are inspired by geometry and the study of smooth surfaces. In the theory
of smooth surfaces, many geometric quantities are available to us, such as Guassian and mean curvature.
These two curvatures alone are enough to determine how the surface is shaped locally around a point.
These geometric informations can also be obtained on pointclouds, but the methods of obtaining them are
not unique. We were able to discover new methods of obtaining these curvatures. In particular, we use
these methods to find local geometric features, that is, features that are determined on each point of the
point cloud. Local features have advantages of being fast and simple while also detecting the important
details in the point cloud.

We need normal vectors on each point of the surface in order to obtain the Gaussian and mean curva-
tures. Just like obtaining curvature, the methods used to obtain normal vectors are not unique [60, 31, 5].
To obtain the normal vectors on each point in the point cloud, we use a method based on the principal
component analysis [28].

Definition 3.1. Let p be a point in a point cloud P .
(1) The center c of P is the mean of all the points in P :

c =
1

|P |
∑
q∈P

q.

(2) The weighted covariance matrix C of p obtained by the neighborhood {q1, ..., qN} around p is given
by the following:

C =
1

N

N∑
i=1

wi(qi −m)(qi −m)T . (3.1)

7
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Here, wi = ∥qi − p∥−1 is a weight defined on each neighboring points, and m is the center of the point
cloud {q1, ..., qN}. If we let Xj = {(q1)j , ..., (qN )j} for j ∈ {1, 2, 3}, the elements of the covariance matrix
are

Cij = Covw(Xi, Xj), i, j ∈ {1, 2, 3},

where Covw is the covariance weighted by w = {w1, ..., wN}.
(3) We have non-negative eigenvalues 0 ≤ λ0 ≤ λ1 ≤ λ2 and corresponding eigenvectors v0, v1, v2 of the
covariance matrix. The eigenvectors v1, v2 generate a tangent plane on the point p. The normal vector n(p)
of p is given by following equation:

n(p) =

{
v0 if ⟨v0, p− c⟩ ≥ 0,

−v0 if ⟨v0, p− c⟩ < 0.

Here, ⟨·, ·⟩ is the Euclidean inner product.

Figure 5: Tangent plane and its normal vector

Remark 3.2. The normal vector n is a R3 valued function on the point cloud. Rotate a point cloud P

to PA by A ∈ O(3), that is, PA = {Ap | p ∈ P}. Let nPA be the normal vector of PA. Then we have
nPA(Ap) = An(p) for p ∈ P .

Gaussian curvature and mean curvature are obtained by using the principle curvatures. On a smooth
manifold M , the principle directions on p are the unit vectors u ∈ TpM such that the directional derivative
Dun of n along u, that is,

Dun = lim
t→0

n(γu(t))− n(γu(0))

t

is linearly dependent to u. Here, γu(t) is some curve on M such that γu(0) = p and γ̇u(0) = v. The principle
curvatures k1, k2 on p are determined by two linearly independent principle directions u1, u2 ∈ TpM by

ki =

{
∥Dui

n∥ if ⟨ui, Dui
n⟩ ≥ 0,

−∥Dui
n∥ if ⟨ui, Dui

n⟩ < 0,
i ∈ {1, 2}.

The Gaussian curvature Kp and mean curvature Hp on p are defined as follows:

Kp = k1k2, Hp =
1

2
(k1 + k2).

Let p be a point in a point cloud, and {q1, ..., qN} a neighborhood of p. It is difficult to obtain the
principle directions or the principle curvatures on point clouds. Instead, we directly define the Gaussian
and mean curvatures. For a point qi in the neighborhood, we define the curvature k(p, qi) along qi − p of

8
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by

k(p, qi) =
∥n(qi)− n(p)∥
∥qi − p∥

.

Here, ∥ · ∥ is the norm defined by the Euclidean inner product. The absolute value of Gaussian curvature
is defined by

Kp =

(
N∏
i=1

k(p, qi)

) 1
N

.

On the other hand, when we add the curvature along qi − p, we also want to consider the angle between
n(qi) and qi − p. Therefore, the mean curvature on p is obtained by the following:

Hp =
1

N

N∑
i=1

(
k(p, qi) ·

⟨n(qi), (p− qi)⟩
∥p− qi∥

)

It should be clear from inspection and remark 3.2 that both Kp and Hp are invariant under distance-
preserving maps. Any rotation will not affect an inner product (hence also a norm), and translation does
not change our results. This latter fact is because T (p)− T (q) = p− q for any translation T and points p, q.
To improve our results as much as possible, we include existing local features that are defined using the
eigenvalues of covariance matrices on points [74]. Let p be a point in a point cloud, and 0 ≤ λ0 ≤ λ1 ≤ λ2

the eigenvalues of the covariance matrix on p determined by some neighborhood. The local features we
use are determined by the following equations:

λ0

λ0 + λ1 + λ2
(1)

(λ0 · λ1 · λ2)
1
3 (2)

number feature description

(1) surface variation how the points around are arranged close to a plane

(2) omnivariance how points are spread out around

In addition, we compute the centroid of each neighborhood as a way of collecting elementary information
about local geometry.

Figure 6: Extract local features at different scales

3.2 Multi-scale

While fine details may be clearer at a higher resolution for some geometric features, some features are
more visible at a lower resolution. By using a multi-scale approach, we can extract features at different

9
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scales to capture a comprehensive view of point clouds features. By multi-scale, we mean extracting
features along discretely varying sizes of neighborhood (see Figure 6).

Extracting features at different scales avoids the problem of determining a one-size-fits-all choice of
neighborhood at the expense of some additional computing time. As the metric we evaluate our success
on is accuracy, this was deemed a worthwhile tradeoff.

3.3 Topology

Although there has been substantial progress on extracting and encoding discriminative geometric
information, research looking into the topological structure of data has only been examined recently with
the rise of topological data analysis (TDA). In TDA, a branch of mathematics and computational science
that applies concepts from algebraic topology to analyze and extract information from complex datasets,
persistent homology is used to analyze the topological features of a dataset across multiple scales or
resolutions. It captures how long topological features (such as connected components, loops, and voids)
persist as we vary a parameter, often the radius of a ball used to probe the space.

Figure 7: Filtration and corresponding plot (See [37])

In practice, the first step of the TDA Analysis pipeline is to define a filtration of simplicial complexes for
some data. A simplicial complex, which is a set of simplices, can be seen as a higher dimensional general-
ization of graphs. The complexes are used to approximate shapes such as non-discrete sets and continuous
mathematical shapes like curves, surfaces and more generally, manifolds. A filtration, an increasing se-
quence of sub-complexes of a simplicial complex, can be seen as ordering the simplices included in the
complex. Simpicial complexes, including Vietoris-Rips complexes, Cech complexes and alpha complexes
often come with a specific order. In persistent homology, filtration helps track how topological features
such as connected components, loops, and voids appear and disappear as the parameter changes.

Persistence diagrams are a key visualization tool used in persistent homology. It shows how long topo-
logical features, such as connected components (0-cycles), loops or holes (1-cycles), and higher-dimensional
features (2-cycles, 3-cycles, etc.), persist across different scales or resolutions. As shown in Figure 9, as the
radius parameters varies, connected components and 1-dim loop get assigned a birth and death.

Persistent diagrams are difficult for machine learning to handle since they represents data as multisets
in a half-plane, which complicates their direct application in many models. To overcome this difficulty,
several vectorization techniques have been developed to transform persistence diagrams into formats more
adaptable to machine learning algorithms. Notable methods include persistence landscapes [9] and per-
sistence values.

10
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Figure 8: Different filtration methods (See [37])

Figure 9: Persistent homology is used with point clouds by constructing Rips complexes (See [47])

We get persistence values from the persistence diagram. For each feature α with birth bα and death
dα, we define by vα = dα − bα the persistence value of the feature α. For the MsGT feature extracion, we
compute the mean, median, standard deviation and skewness of the features and add them to our final
feature vector.

Definition 3.3. The population mean is the sum of all the population values divided by the total number
of population values.

µ =

∑n
i=1 xi

n
, (3.2)

where

• µ is the population mean,

• n is the total number of observations,

• xi are a particular value and

Definition 3.4. The median m is the middle data point when the dataset is arranged in order from smallest
to largest. If there are two middle values then we take the average of the two values.

Definition 3.5. The standard deviation σ measures how spread out the data is. A simple formula for
calculating the standard deviation is:

σ =

√√√√ 1

n− 1

n∑
i=1

(xi − µ)
2 (3.3)

11
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Definition 3.6. The skewness µ̃ is a measure of the asymmetry of the probability distribution of a real-
valued random variable about its mean. The formula for calculating the standard deviation is:

µ̃ =

∑n
i=1 (xi − µ)

3

σ3 (n− 1)
. (3.4)

Persistence landscape converts persistence diagrams into a series of functions over a real line, providing
a scalar summary that captures the essential features of the diagrams.

• Construction of persistence landscape

– Landscape function: created from the persistence diagram using weighted sums of piecewise
linear functions,

– Evaluation: landscapes are evaluated at specific points to generate feature vectors.

• Advantages

– Dimensionality reduction: simplifies the persistent diagram while preserving essential topo-
logical information,

– Computational efficiency: facilitates easier and faster analysis compared to raw persistent dia-
grams.

Our MsGT model computes persistence landscapes with the Ripser python package and includes them in
our feature vector, forming the other part of our topological set.

4 Simulation

In this section we will explain the dataset we used in this study, the explicit construction of our feature
extraction method, and discuss the results and figures from our simulation. In particular, we analyze
the effectiveness of our model against other benchmarks, the importance of the inclusion of a multi-scale
approach and topological global data, and the effectiveness of our novel geometric features compared to
standard existing geometric features. All classification was performed using XGBoost, a gradient boosting
method, with parameters:

Multiclass classification was also performed with other classifiers and overall accuracy was recorded:
see table 3 in the appendix.

4.1 Data and Data Pre-processing

The dataset employed for this study is ModelNet10, a well-established benchmark in the domain of
3D object recognition and classification. ModelNet10 comprises 10 distinct categories, each containing a
variety of 3D CAD models, including everyday items like chairs, tables, airplanes, and cars. The training
and testing data were directly downloaded from the https://modelnet.cs.princeton.edu/ ModelNet
website.

To prepare the data for network training and evaluation, we performed several preprocessing steps. Ini-
tially, we sampled each 3D model to obtain a uniform set of 1024 points. This fixed sampling rate ensured
a consistent input size, optimizing the network’s processing efficiency. Subsequently, we normalized the
point coordinates, scaling them relative to each model’s bounding box. This normalization step ensured
that all points fell within a standardized range, enhancing the robustness and convergence speed during
training.

To further augment the dataset and improve the model’s generalization ability, random noise was
introduced to the point cloud data. This addition of noise created slight variations in point positions,
simulating real-world conditions. For reference later on, the classes are numbered as follows:
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4.2 Construction

The explicit construction of our feature vector goes as follows:

• For each point p in the pointcloud, we record the following features in a local neighborhood:

– Gaussian curvature

– Mean curvature

– Omnivariance

– Surface Variation

– Mean position of neighbors

The selection of the supplementary geometric features (omnivariance and surface variation) was
decided by both testing and a difference in feature highlighting (see appendix, figures 16 through
19). It should be noted that mean position is given in (x, y, z) coordinates, hence this feature has
three scalar entries as opposed to the others, which have one. Thus there are seven scalar entries for
each point in each neighborhood.

• These measurements are taken at five different sizes of neighborhood: 16, 32, 64, 128, and 256. The
neighborhood size was decided based on limited testing and with the philosophy that exponentially
increasing size is necessary to detect changes in large neighborhoods. These measurements are
concatenated for each point, then added to the feature vector for a given image. Nearest neighbors
search is done by the KDTree method.

• The geometric portion of our extraction method thus yields

(# of nbhds)(# of scalar entries)(# of points) = (5)(7)(1, 024) = 35, 840 scalar entries

• For global feature extraction, we first recorded statistical information from persistence values. Specif-
ically, mean, median, standard deviation, and skewness. Afterwards, we included persistence land-
scapes computed for the persistence diagrams of each point cloud, with the number of landscapes
set to 7 and number of steps at 200, yielding 1, 400 scalar entries. Again, this was chosen by limited
testing. All persistence diagrams were computed using the Ripser python package. In summation,
for each pointcloud, these topological features contributed 1404 points. Thus our feature vectors
contained 37, 244 entries.

4.3 Benchmark Testing

The first section of our testing compares the success of our method against a deep-learning benchmark
in PointNet and a hand-crafted benchmark in Fast Point Feature Histogram (FPFH) [56]. Both were chosen
due to their popularity and also the availability of existing code, which made implementation more time-
efficient. Figure 10 gives the overall accuracy of MsGT when performing multiclass classification compared
to both benchmarks, while figure 11 gives the confusion matrix, providing more detail as to which classes
MsGT performs well on (confusion matrices for PointNet and FPFH can be found in the appendix).

One can see from the first figure that while MsGT does not reach the level of PointNet in terms of
accuracy, it far exceeds FPFH. We consider PointNet to be a bar that we strive for despite the fact that it
may be unattainable, and FPFH the bar we need to beat for meaningful results. In this view, MsGT has
thoroughly succeeded in providing a new, accurate classifier from the perspective of hand-crafted feature
extractors.

From the second figure, it becomes clear that the success of MsGT varies greatly from class to class.
The authors suspect this may be because of both the shape of the object and the contents of the data. For

13
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instance, many pointcloud files in the training set had less than 1024 points and had to be upsampled to
be the right size. Some classes, such as class 2 (chairs), had a higher proportion of large (greater than 1024
points) point clouds than other classes, and this was a class that MsGT performed well on.

Figure 10: Overall accuracy (Multiclass) Figure 11: MsGT (Multiclass)

While MsGT did not perform well on some classes in multiclass classification, it performed very well
on others. As an interesting remark, the two classes which saw the highest rate of success were classes that
PointNet struggled with (classes 2 and 8, chairs and tables). This may suggest that hand-crafted methods
that rely on mathematics, such as MsGT, can fill in the gaps left by deep learning methods, a topic we will
discuss again in the next section. In any case, the success we saw with MsGT in classes 2, 7, 8, and 9 led
us to measure the accuracy of our method in binary classification with these classes.

Figure 12: Accuracy (Binary Classification)

As expected and as apparent from figure 12, MsGT does quite well in binary classification tasks with
these four classes, exceeding 91% accuracy in all of them and far outperforming FPFH. Of particular
note is class 8 (tables) where MsGT provides higher accuracy ratings than PointNet. We believe that this
is evidence that our method is well-suited to binary classification tasks in a real-world setting. Table 1
summarizes the results of this subsection.

14
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Classifier Multi-class
Binary

Chair Sofa Table Toilet
MsGT 62.115% 92.401% 91.850% 93.392% 91.960%

PointNet 83.040% 97.907% 95.044% 93.062% 97.907%
FPFH 29.000% 85.793% 68.612% 84.471% 88.987%

Table 1: Classification Results for Different Classes and Feature Extraction Models

4.4 Topology and Multi-scale Testing

As was outlined in section 3, our method has two key components: multi-scale geometry and global
topology. To determine the relevance of these components, we test multi-scale and binary classification
on two stripped-down versions of our method: one with only geometric features extracted at a fixed size
of neighborhood (no topology or multiscale), and then one with topological global features added (no
multiscale). We then compare the results with MsGT.

Figure 13: Overall accuracy (Multiclass) Figure 14: ROC Curve (Binary Class., chairs)

As visible in figure 13, the accuracy improves notably along each step: from Geometry to Geometry
and Topology, and from Geometry and Topology to MsGT. Figure 14 gives the ROC curve for a select class
in binary classification: more figures can be found in the appendix if desired, but each figure shows the
same trend.

The key takeaway from these figures is that each of the components of MsGT work together to create
something better than any of the individual parts. Geometry alone is not enough for an accurate model.
Including topology improves the model, and once we use a multi-scale approach, it improves the model
even further.

4.5 Geometric Feature Testing

Recall that our method uses two new geometric features Kp and Hp alongside some existing geometric
features as a supplement. Our final set of testing shows that these new geometric features improve upon
existing geometric features when it comes to classification tasks. In other words, our new geometric
features are not just additional choices for features, they are the better choices.

Testing was done using only geometry with a multi-scale approach and the same neighborhood sizes as
before. We tested Hp and Kp as a pair in multiclass classification and binary classification. For comparison,
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testing was then done with all possible combinations of the following features (recall that λ0, λ1, and λ2

are eigenvalues of the covariance matrix at a point):

Feature Number Feature Name Formula

0 Surface Variation λ0(λ0 + λ1 + λ2)
−1

2 Linearity (λ2 − λ1)λ
−1
2

3 Planarity (λ1 − λ0)λ
−1
2

5 Omnivariance (λ0 · λ1 · λ2)
1
3

6 Anisotropy (λ2 − λ0)λ
−1
2

Table 2: Features used in Geometry testing. Feature numbers appear in figure 15.

We recognize that this is not a comprehensive list, but due to the time restrictions of this project, we
felt this was the most representative of other available geometric features and that these features had
reasonable success in their own right.

Figure 15: Accuracy (Multiclass)

We can see from figure 15 that our new features, when taken as a pair, far outperform any pair from
table 2 in multiclass classification. We also performed tests with binary classification on the same classes
chosen earlier, and similar trend occured. Our pair of features outperformed every pair of features from
table 2 in binary classification of chairs, tables, and toilets, and was close to the best in classification of
sofas. Bar graphs, ROC curves, and precision-recall curves for these tests can be found in the appendix.
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5 Conclusion

In MsGT, we have constructed a novel hand-crafted feature extraction method that synthesizes topology
and geometry on a hierarchical, or multi-scale, level. This method introduces novel and effective geometry
to the field of point cloud processing. Moreover, the results of section 4 show that MsGT is a dependable,
robust, and accurate hand-crafted feature extraction method. In particular, MsGT was able to outperform
some existing hand-crafted methods and occasionally reach levels of accuracy achieved by deep learning
models such as PointNet.

The MsGT method particularly excels in binary classification of certain objects such as chairs and
tables (figure 12). Even after only preliminary testing, we can envision MsGT being used in real-world
applications for these sorts of tasks. This is particularly useful for industry, as the goal that MsGT was
meant to achieve was providing an accurate hand-crafted feature extraction method, thereby removing the
cost constraints associated with deep learning methods. We believe that MsGT will meet this goal.

Finally, we recognize that MsGT has limitations. As seen in figure 11, MsGT does not perform to a
satisfactory level on certain classes. Furthermore, we are not computer scientists, hence the coding of our
algorithm is only partially optimized.

However, it is also true that MsGT is in it’s preliminary stages, i.e. this version of MsGT is an alpha
build. No tuning was done to this model and, as far as the goals we have for it, it is wholly incomplete.
This implies that MsGT has much room to grow and improve even further, a topic we look to expand upon
in the last section. Given the results so far and considerable room for tuning, we believe that MsGT has
the potential to make a meaningful impact in the point cloud processing market.

6 Future Work

6.1 Weighting and Parameter Tuning

One remarkable aspect of MsGT is that it performs well in the absence of any parameter tuning or
weighing of features. In other words, MsGT was (more or less) not tuned for performance on Model-
Net10. In the first iterations of the method, we normalized the feature vector to take values in [−1, 1].
However, forgoing the normalization considerably improved results. Since the values that each feature can
take vary greatly (e.g. persistence landscape entries can take values significantly greater than 100, while
mean curvature tends to stay between −1 and 1), this implies that weighing the components of the feature
vector should impact the accuracy of the model in a meaningful way. Moreover, the number of scalar
entries dedicated to a particular feature also varies greatly. For instance, the statistical measurements of
persistence values only account for four of the entries in the feature vector, or about 0.0001% of the feature
vector, while persistence landscapes account for 1400, or about 4%.

weighted feature vector (intuition) =
[

p. values landscapes Gauss Mean Omnivariance · · ·
]T

Furthermore, weighing the components based on some sort of variable correlation was something that
was always in our plans, but our project was time-limited. We believe this should be one of the first
approaches for future work: it will likely be both easy to implement and make a considerable difference.

Finally, parameters for the Ripser package for computing persistence landscapes and the XGBoost clas-
sifier were not altered very much, if at all. The persistence landscape code underwent minor testing of a
handful of different step and landscape combinations before we chose the best one, and this testing was
done in the absence of multi-scale geometric features. Even further, XGBoost’s parameters were not altered
at all, and so we believe there is room to improve accuracy further here. Given the time limitations of our
project, this was secondary to our other goals, as this should improve the accuracy of all methods and our
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purpose was to compare our method with others. However, for a final product, a finely tuned classifier
would present the clearest picture of MsGT.

6.2 Speed

As was noted earlier, the authors of this report are not computer scientists, rather we are mathemati-
cians and statisticians. As such, most of the code written for the project could only be optimized to the
limits of our knowledge and what we could learn in eight weeks. For instance, while we included some
parallel computing and vectorization in our code, it is rather naive and not implemented everywhere.

In the future, we would like to focus on writing the package for our algorithm in the most efficient way.
We are aware of packages out there that improve computation speed considerably, like cuda and numba,
and would like to implement them. Moreover, it is possible that writing our algorithm for a different
language, such as Julia, could improve our computation time considerably given the limitations of python.
Ultimately, while we view our role in this project as the architects of a mathematical model, this model
must also be tuned by the hands of computer scientists to make it relevant for industry.

6.3 Topological improvements

For future works, we can incorporate a few topological feature vectors. In our approach, we used per-
sistent values and persistent landscapes to vectorize persistent diagrams. These are rudimentary features
and limited in scope. For future work, we can incorporate other vectorizations of persistent diagrams, such
as persistent entropy and persistent images.

Other than persistent diagrams, there are several other topological vectors that we can incorporate:

1. Betti numbers Betti numbers are fundamental invariants in algebraic topology that quantify the
number of independent cycles of various dimensions in a topological space, essentially capturing the
”holes” in different dimensions.

2. Euler characteristics For a convex polyhedron, the Euler characteristic is given by:

χ = V − E + F (6.1)

where V is the number of vertices, E is the number of edges, and F is the number of faces. The
Euler characteristic is a topological invariant that provides a measure of a topological space’s shape
or structure. It is especially useful in the study of polyhedra, surfaces, and more general topological
spaces.

3. Reeb graphs A Reeb graph is a tool used in topology and computational geometry to study the
shape and structure of a space by analyzing the level sets of a function defined on it. It simplifies the
complexity of the space into a graph that captures the essential features of the function’s behavior. In
essence, the Reeb graph offers a simplified view of a space’s topology by focusing on how connected
components change with respect to continuous function.

We anticipate that having a more robust topological tool set can improve the model. For instance, we
think that the small improvement shown in 13 after including topology may be a result of underdeveloped
topological architecture in MsGT, and not a sign of weakness of topological methods.

6.4 Improving PointNet

In our future research, we aim to enhance the performance of PointNet by integrating the handcrafted
features extracted by MsGT. By leveraging the strengths of both methods, we believe that PointNet can
achieve higher classification accuracy and robustness. Below are the key areas we will focus on to achieve
this improvement:
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1. Feature Fusion

We plan to explore how to integrate handcrafted features extracted by MsGT with the automatic
features learned by PointNet to enhance the model’s classification performance. The MsGT method
utilizes geometric techniques to extract local features and topological techniques to extract global
features. The combination of local and global features can capture rich information in point cloud
data, while PointNet excels at automatically learning high-level features from the data. By fusing
these two types of features, we aim to leverage both the geometric and topological information from
handcrafted features and the abstract representations from automatic features to improve the model’s
classification accuracy on complex point cloud data. Specifically, we will attempt to incorporate the
local and global features extracted by MsGT into the feature extraction layers of PointNet and val-
idate the effectiveness of this fusion strategy through experiments. Previous research has shown
that integrating feature extraction methods into PointNet can significantly enhance classification per-
formance. For example, in the study ”PointNet meets Self-Attention Graph Pooling: A Synergistic
Approach to Point Cloud Classification,” the multi-class classification accuracy of PointNet was im-
proved from 85% to 92% by incorporating their feature extraction method. We believe that MsGT can
similarly enhance the performance of PointNet.

2. Multi-Scale Feature Representation

One of the significant advantages of MsGT is its ability to extract multi-scale geometric features,
which is crucial for handling point cloud data of varying scales. In our future work, we will explore
how to utilize MsGT’s multi-scale feature representation to enhance PointNet’s performance. In
point cloud data, different objects may have varying scales, and by incorporating MsGT’s multi-
scale features, we aim to enable PointNet to better handle these variations, improving the model’s
robustness and generalization capabilities. For instance, we can introduce MsGT’s multi-scale feature
representation into PointNet’s input layer, allowing the model to learn simultaneously at different
scales and thus enhancing its adaptability to diverse data.

3. Improvement in Category Classification Performance

Analysis of the confusion matrices indicates that MsGT’s classification accuracy for chair class (Class
2) is significantly higher than that of PointNet (89.00% compared to 62.00%). By integrating the
features extracted by MsGT into PointNet, we can substantially improve PointNet’s classification
performance for the chair class. Furthermore, PointNet outperforms MsGT in some categories, and
by analyzing the effective features in these categories, we can introduce them into MsGT to further
optimize its feature extraction strategy. In our future work, we will focus on how to reduce misclas-
sification between different categories in PointNet by combining MsGT’s features to enhance overall
classification accuracy.

4. Binary Classification Performance Enhancement

In addition to multi-class classification, we have also conducted binary classification studies. Specif-
ically, for the binary classification task of the table class (Class 7), MsGT’s classification accuracy
significantly surpasses that of PointNet. This indicates that MsGT has higher classification perfor-
mance in handling binary classification tasks for specific categories. In our future work, we will
further investigate how to apply the advantages of MsGT in binary classification tasks to PointNet,
improving PointNet’s performance in binary classification through feature fusion and optimization
strategies.
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7 Appendix

Figure 16: Gaussian Figure 17: Mean Curvature

Figure 18: Surface variation Figure 19: Omnivariance
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Classifier Accuracy Recall Prec. F1
Logistic Regression 0.6441 0.6441 0.6391 0.6300
Random Forest 0.5743 0.5743 0.5516 0.5407
Ridge 0.4894 0.4894 0.4669 0.4664
Naive Bayes 0.4715 0.4715 0.5206 0.4582
Support Vector Machine 0.4110 0.4110 0.4934 0.3432

Table 3: Performance comparison of classification models on MsGT features.

Figure 20: PointNet (Multiclass) Figure 21: FPFH (Multiclass)

Figure 22: Binary Classification (Tables) Figure 23: Binary Classification (Tables)

Figure 24: Geometry Testing (Binary) Figure 25: Geometry Testing (Binary)
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Figure 26: Geometry Testing (Binary) Figure 27: Geometry Testing (Binary)

Figure 28: Geometry Testing (Binary) Figure 29: Geometry Testing (Binary)

Figure 30: Geometry Testing (Binary) Figure 31: Geometry Testing (Binary)
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Figure 32: Geometry Testing (Binary) Figure 33: Geometry Testing (Binary)

Figure 34: Geometry Testing (Binary) Figure 35: Geometry Testing (Binary)
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