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1 Abstract

Water management in canal systems is crucial for a stable water supply [1]. Traditionally, gate operations
have been manually controlled by monitoring water levels and relying on the experience and intuition of op-
erators [2]. However, this can be dangerous under severe weather conditions [2]. Furthermore, recent climate
changes have made precipitation predictions difficult, resulting in floods and droughts in many regions [3], [4].
To mitigate these issues, automating and optimizing gate operations is essential.

As a first step, this research project will analyze past gate operations using actual observed data on
water levels and flow rates. Ultimately, our goal is to achieve a stable water supply through automated
gate operations in the future. The data consists of 22 measurement points from a basin with 15 facilities (1
dam, 1 pump, 8 diversion locations, 3 junctions, and 2 spillways) in Shiga prefecture, Japan. Measurements
include the flow rate [m3{s], water level [m], and rainfall [mm], taken every 10 minutes from April 16, 2023,
to October 1, 2023.

In this report, we describe data cleaning and processing, gate operation detection, classification of gate
operation causes, identification of water shortages, and a concept of automated water management systems.
In each process, we conduct a comparative study of between manually detection and mathematical methods,
as well as a comparison among representative univariate and multivariate methods, in order to investigate
which method is most suitable for the data.

Comparison between several methods indicated that level shift detection can adequately replace manual
detection, particularly in identifying gate operations. Furthermore, it is suggested that methods similar to
those addressed here show promise for the classification of gate operations. We illustrates our workflow in
Figure 3 and summarize our study in a Table (edited by industrial mentors) described in Section 2.3 and
Appendix A, respectively.

2 Introduction

2.1 Background

It is predicted that by 2050, more than 40% of the world’s population may face severe water shortages [5].
The amount of freshwater available for human use is extremely limited. Freshwater accounts for only 2.5%
of the Earth’s water [6], with the majority of this freshwater existing as ice or glaciers in regions such as
Antarctica and the Arctic [7]. Freshwater in liquid form constitutes about 0.8% of the Earth’s total water,
and most of this is groundwater. Consequently, only about 0.01% is readily available in rivers and lakes [5].
Currently, we rely on rivers and lakes, and the amount of water available for human use changes depending
on precipitation [8]. Therefore, climate change caused by global warming, which results in abnormal weather
patterns such as droughts and heavy rains, has a significant impact on the availability of water resources [9].

Global warming affects water resources in two distinct perspectives [10]. The first perspective concerns
changes in water demand. As the release of large amounts of greenhouse gases increases atmospheric heat
absorption, the temperature will rise [11] and the evaporation from agricultural land will increase [12]. Thus,
it is necessary to address the anticipated increase in required water supply.

The second perspective concerns changes in river runoff. Rising temperatures will reduce snowfall and
cause it to melt earlier, resulting in changes in irrigation schedules [13]. With the change in river flow, more
efficient water use will be required [14]. To adapt to these changes in the demand and supply of water
resources, it is considered necessary to review traditional water management practices.

This study analyzes data from an irrigation canal around Lake Biwa, Japan’s largest lake located in Shiga
Prefecture. This lake supports approximately 17 million people and is one of the most crucial regions for
water management in Japan [15]. About 70% of water demand around this area is allocated to irrigation [16].
Thus, making efficient water management in irrigation canals extremely important because irrigation water
demand will be uncertain due to anticipated climate change [17].

A water management system consists of a network of irrigation canals and gates that divert water from
a river or watershed to meet demand [18]. Figure 1 shows the flow of water along one canal. In irrigation
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canals, water flows in the order of primary canal, branch canal, and farmlands. This study focuses on data
from one canal, consisting of a dam, canals, and branches that bring water to farmland. Our target canal also
contains spillways to handle water overflow and a pump to handle water shortages by pumping water back
into the system. Diversion work diverts water flowing along a canal to branches via sluice gates. Branches
that bring water to farmland can be further described as “heads” (closest to the main canal) and “tails”
(furthest from the main canal). Water flows from the branch head to the branch tail. Junctions combine
water flowing along a canal with water from a pump to add water to the system. Of primary interest is to
avoid water shortages along the branches with minimal energy use.

No unauthorized reproduction

Measured point (22 points)
Distance between gates (30 km total)

1.7552.50.50.52.7520.52.2

9.25

0.5

0.5

0.5

2.75

2.75 4

2.251.754.75

Data Description

Figure 1: Target canal schematic from [18]. A - O represent facilities, while a1 - o2 are measurement points.

2.2 Preliminaries

2.2.1 Description of Data

The data consists of 22 measurement points taken from the water management system including 15
facilities (1 dam, 1 pump, 8 diversion locations, 3 junctions, and 2 spillways). Figure 1 shows a schematic
of the target canal, with the distance in kilometers between facilities provided by industrial mentors for
reference.

The values measured by sensors are flow rate, water level, and rainfall (thought not all the measurement
points have all 3 values). Flow rate is the water volume at the measurement point and is measured in m3{s.
Water level is measured in m, and rainfall is measured in mm. The measurements are taken every 10 minutes
from April 16, 2023, to October 1, 2023 and were taken roughly 24,152 times (though some measurement
values are missing).

The canal can be further categorized as primary canals, secondary canals, branch heads, and branch trails.
The primary sources of water are a1 (a dam) and o1 and o2 (a pumping station at the furthest downstream
point in the primary canal). Only the water level is measured at branch tails. Branch heads and canals may
have both flow rate and water level, with flow rate determined by the HQ curve [18] (formally referred to
”stage discharge rating curve” [19]). The data does not have information describing gate operation timing
and opening degree, demand of the farmland, and water supply from farm ponds and pumps other than o1
and o2.

Figure 2 shows the data of flow rate at c1, water level at d1, and water level at d2. These data are
preprocessed to change their scales after replacing negative values to 0. The abrupt drop and subsequent
rise at the beginning of June indicate that there was heavy rainfall due to a typhoon. To prevent overflows,
all gates were closed and then reopened after the weather condition was improved. In August, the water
demands of rice field increased although we had less rain. The stop of water supply means that operators
attempted to maintain the water level of the dam.

3
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Figure 2: Example of time series data measured by water management system

2.2.2 Assumptions

For simplicity, the following conditions are assumed in this study:

1. Uniform flow

2. Fixed channel geometry (slope and length)

3. No back flows and directed cycles

To satisfy the aforementioned assumptions, particularly the third one, this study mainly focuses on the
upstream part of the canal in Figure 1 (facilities A-D), where the waterway network is relatively simple.

2.2.3 Definitions

In this study, several proprietary terms are defined as follows:

Definition 2.1. Gate Operation: A sudden change in the measured quantities (water level and flow rate)
that is not considered to be caused by changes in the upstream measured quantities.

Definition 2.2. Classification of Gate Operations: The process of categorizing detected gate operations
from data based on the reason for the operation. Gate operations are classified into three reasons: Water
Shortage, Surplus, and Constant.

Definition 2.3. Water Shortage: A decrease in the measured quantities that persists for several days
before the gate operation and is considered the reason for the gate operation.

Definition 2.4. Surplus: An increase in the measured quantities before the gate operation that is considered
the reason for the gate operation.

Definition 2.5. Constant: This term refers to a gate operation where the measured quantities before the
operation are almost constant, and the operation is likely due to a scheduled action.

2.3 Objectives

The overall goal of this project is to develop automated methods to optimize water gate operations to
minimize water shortages and reduce power usage. Before developing ways to improve the system, it is
necessary to understand the workers’ current gate operations and identify potential areas of improvement.
As the first step towards developing optimal water management, we have two primary objectives:

1. Identify the timing and location of past gate operations based on past flow rate and water level mea-
surements.

2. Classify the cause of past gate operations, i.e. determine whether gates were operated in response to
water surplus or shortage.

4
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Furthermore, if time permits, we will work toward another stretch goals.

3. Suggest methods to automate gate operations that eliminate water shortages, reduce power costs (pump
usage and gate operation), and reduce water surpluses (flood control).

Figure 3 illustrates the workflow associated with each objective of our study.

Figure 3: Data Flow. The methods used in this report and the positioning of their objectives. Manual
methods were used for both gate operation detection and classification.

3 Methods and Results

3.1 Dataset Preparation

3.1.1 Manual Detection and Classification of Gate Operations

Detection of manual gate operations was carried out using the following procedure. The flow rate data
for the dam and all gates (A(a1), B(b1), C(c1), D(d1), F(f1), G(g1), I(i1), J(j2)) were analyzed individually.
A graph was created for each gate (Figure 4a), and the times when gate operations might have occurred were
recorded (Figure 4b).

For example, on April 17th in Figure 4a, the flow rates of c1 and i1 increased, indicating potential gate
operations at gates C and I. However, since gate C is upstream of gate I, the gate I was not operated, and the
increase in flow rate at i was naturally due to the operation of gate C. Therefore, the actual gate operation
was only at gate C. Observing the graph of i1 flowrate, there is a decrease just before the increase. This
indicates that the operation of gate c was performed due to a water shortage at gate I. The same procedure
was followed to consider all gate operations and their reasons, as summarized in a table like Figure 4c.

The results were compared with those obtained using other methods for gate operation detection and
were used to evaluate the other methods.

3.1.2 Data Cleaning

Prior to time series analysis, it is necessary to clean and smooth the water measurement data. Due to
errors in sensor measurement, the data contain erroneous recorded ‘zero’ measurements, missing observations,
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c1_FlowRate i1_FlowRate
c. Result of gate C

b. Table of Flow Rate

Ti
m

e

a. Graph of Flow Rate

Figure 4: Example of manual detection. a: Graph of c1 FlowRate and i1 FlowRate. b: Table that is the
basis for a: Graph of Flow Rate. The sections where gate operations might have occurred are highlighted in
orange. c: Example of Results. Detected and classified gate operations of gate C by Manual methods.

and fluctuations that distract from the significant and meaningful changes in flow rate and water level
(Figure 5). We first removed recorded zeros that we suspect to be errors rather than true measurements and
then interpolated the missing data using standard interpolation methods. After the data was cleaned, we
compared common methods for data smoothing methods and noise removal and chose one method to use for
the rest of our time series analysis.

Replacing Zeros

When flow rate or water level measurement fails, it may be recorded as zero. Such outliers need to be
removed for accurate data analysis. We attributed the zero in the case shown in Figure 6(b) to a measurement
failure. This figure depicts an instance where in one time step, the measurement value decreases to zero, and
in the following time step returns back to the previous value. Since it is unlikely that the water level or flow
rate can change by this amount within two-time steps (20 min), we suspect this value is an error. We replace
values such as these with ‘NaN’.

Interpolating Missing Data

The data contain several missing observations due to sensor-detected anomalies. We apply linear inter-
polation to predict the missing value from the water values before and after the missing observation. For
simplicity, we used linear interpolation1 as the interpolation method, the algorithm of which is shown in
Figure 6(a). The algorithm replaces the missing value with an estimate from a linear equation between the
neighboring observations. In this process, we also linearly interpolate the recorded zeros that we suspected
to be errors. In the event that a recorded ‘zero’ was erroneously removed, i.e. the measurement was a true
zero, the interpolated value will still be relatively close to zero and hence will not introduce significant error
into the measurement.

1Other effective methods such as spline interpolation can be mentioned. However, considering factors such as the lack of
prior information about the degree, its implementation was not carried out.
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Figure 5: Raw data containing noisy fluctuations at various measurement locations.

(a) (b)

Figure 6: (a) Interpolation algorithm. (b) Replacing Zero algorithm.

Sliding Window Average/Median Filters

3.1.3 Data Smoothing

Trend Filtering

The Hodrick-Prescott filter is used to remove noisy cyclical trends in raw data in order to extract the
smooth underlying long-term trend of a time series. We assume the yt “ τt ` ct where τt is the long term
trend component that is uncorrelated with the noisy cyclical signals, ct. The algorithm finds an estimate for
τ by solving the following minimization problem shown in Equation 3.1.

min
τ

p

T
ÿ

t“1

pyt ´ τtq
2 ` λ

T´1
ÿ

t“2

rpτt`1 ´ τtq ´ pτ ´ τt´1qs2q (3.1)

The first term, yt ´ τt “ ct, which represents deviations from the long-term trend and is assumed to have
an average of 0 in the long term, is penalized by the first term in Equation 3.1. The λ parameter penalizes
the deviations in the growth rate of the trend component by penalizing the sums of squares of its second
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difference (where larger values place a higher penalty on the sum of the squares for the long-term trend’s
second difference) [20]. We implement this algorithm using Python ‘statsmodels’ [21] for using time series
analysis filter,‘hp filter’.

Sliding Window Average/Median Filters

We first considered the sliding window technique for data smoothing. This methods replaces every data
value with the average of observations before and after the target data point. For a specified window size,
w, an observation yptiq at time ti is replaced by

¯yptiq “
1

w

i` w
2

ÿ

j“i´ w
2

yptjq. (3.2)

We independently apply this method for each measurement location for series of window sizes ranging
from 3 time steps (30 minutes) to 30 time steps (5 hours). In Figure 7, we compare the effect of applying
different window sizes to smooth the data. This depicts a trade-off between smoothness and precision when
choosing a window size – larger window sizes better minimize the noise yet result in the flow rate beginning
to increase sooner and over a longer period of time. If it is sufficient to detect the time of a gate operation
with less accuracy, then a larger window size may be preferred to the enhanced noise smoothing.

Figure 7: An example of the window size selection noise smoothing using flow rate at measurement site a1.

Rather than using the mean value across a sliding window, we can instead use the median. This can help
reduce the issue of causing the slope around changes to decrease but less adequately smooths time series
noise.

Kalman Filter

The Kalman filter is an algorithm that is typically used for time series data forecasting given multiple
current data measurements. For this problem, we assume that the water measurement state at time t, xt,
can be represented by Equation 3.3 where A represents the transformation of the measurement between time
steps and wk some uncertainty or perturbation in the system. zk in Equation 3.4 represents the measurement
value at time k with added noise vk and update process H.

xk “ Axk´1 ` wk (3.3)

zk “ Hxk´1 ` vk (3.4)

8
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It is similar to a predictor-corrector method in that it contains (1) a time update equation that obtains an
a priori estimate for future time using the current state and error covariance estimates, and (2) a measure-
ment update equation that synthesizes new measurements with the a priori estimate to obtain a posteriori
estimate [22]. Using an initial estimate of xk and a prior covariance estimate P´

t , an a priori estimate is used
to evaluate the Kalman gain (Equation 3.5) to acquire a posteriori estimates of the true state and covariance
which will serve as our smoothed time series data. We follow the implementation demonstrated by Filippo
Bianchi [23].

Kk “ P´
k HT pHP´

k HT ` Rq´1 (3.5)

Comparison of Smoothing Methods

A visual comparison for each of the smoothing methods is shown in Figure 8. We plot the raw data in
grey to help depict the level the effect the smoothing method has on the level of noise and the rate at which
flow rate and water level change. Sliding window averaging, shown in blue, was implemented with a window
size of 12. This method best captures the steady increase of flow rate after a gate was operated though
the increase begins about 1 hour earlier than the raw data shows. The trend filter experiences even more
inaccuracies of the timing precision though contains less noise than the other methods. The Kalman filter
appears to sufficiently smooth the data as well and seems to retain the timing of the gate operation, though
the data take significantly more time to reach the new flow rate/water level value 2.

For the rest of our time series analyses (up to Section 3.4.3), we choose to use the data smoothed with the
Hodrick-Prescott trend filter because the objective of classifying the cause of gate operation does not require
that we have the precise time a gate was operated.

Figure 8: Comparison of smoothing capability of tested filters. For the 4 different measurement locations, we
plot the raw data (grey), the Kalman filter (black), the Hodrick-Prescott trend filter (red), and the sliding
window averaging (blue).

3.1.4 Time Series Shifting

By observing some points, we can estimate delays between each gate. The processed data is shown in
Figure 9a. By shifting, we can estimate each delay (see the difference between Figure 9a and b).

2This delay was expected to be resolved by using the Kalman Smoother [24]. However, considering the time constraints of
the project, its implementation was not carried out.

9
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(a)

(b)

Figure 9: Comparing shifted (a) and non-shifted data (b).

3.2 Detection of Gate Operations

3.2.1 Level Shift Detection

Level shift detection falls under the broader category of change point detection where we attempt to
find meaningful or significant changes in the underlying trend in signal data. There are various methods
for detecting change points and include several key features such as search method, cost functions, and
constraints [25].

For this project, we use a sliding window-based approach for detection level shifts with an l2 cost function
(Equation 3.6). For a given window from t0 to t1, the algorithm computes the discrepancy of the cost function
between the left and right half of the window. That is, for t0 ă w ă t1 with w as the center of the current
window, we compute dpyt0:w, yw:t1q shown in Equation 3.7

cpyt0:t1q “

t1
ÿ

i“a`1

||yi ´ ȳt0:t1 ||22, (3.6)

dpyt0:w, yw:t1q “ cpyt0:t1q ´ cpyt0:wq ´ cpyw:t1q. (3.7)

We obtain a curve where each time value has a discrepancy value given the window size after which a
sequential peak search is performed to select the level shifts or change points. We implement this algorithm
using ‘ruptures’ [25] where we estimate the number of level shifts as a hyperparameter. We will use the

10
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number of shifts detected manually as an estimate for the number of peaks to search for (about 32 for each
measurement location).

Assuming each gate is operated once a week (four times a month), the amount of this level shift aligns
reasonably with the total number of gate operations per facility.

Level Shift Post-Processing

After obtaining the list of level shifts at each location, we need to sort through to determine which shifts
actually reflect a gate operated at that measurement site or are the result of an upstream gate being operated.

We first apply time series shifting techniques to line up level shifts with upstream causes. The time index
of each downstream measurement is shifted back by the amount of time we estimate the water from facility
A to reach that measurement location (described in Section 3.1.4). Then we concatenate our list of possible
gate operations across all sites and remove any duplicate events. That is, we will only keep the first time
stamp for a group of detected level shifts that occur within 30 minutes. For each of the remaining level shifts,
we will determine which sites had a level shift detected around that same time, after which we assume that
the most upstream level shift was the gate that was operated and the downstream level shifts were a result
of that operation.

An example of the list of gates operated is shown in Table 1. Here we write ‘WL’ for the water level
time series and ‘FR’ for the flow rate time series. The operated gate was the location of the most upstream
measurement that contained a level shift. Note that d2 does not contain a gate and we suspect that times
when only d2 experiences a level shift are due to farmland usage.

Time Gate Operated a1 FR a1 WL b1 FR c1 FR d1 FR d1 WL d2 WL

2023-04-16 9:20:00 a1 1 1 0 0 0 0 0
2023-04-17 12:40:00 c1 0 0 0 1 0 0 0
2023-04-18 8:40:00 a1 1 1 1 1 1 1 1
2023-04-19 14:00:00 a1 0 1 0 0 0 0 0
2023-04-20 10:50:00 a1 1 1 0 0 0 0 0
2023-04-21 9:10:00 c1 0 0 0 1 0 0 0
2023-04-22 7:50:00 d2 0 0 0 0 0 0 1
2023-04-23 13:50:00 d2 0 0 0 0 0 0 1
2023-04-24 10:10:00 d1 0 0 0 0 1 1 1

Table 1: Example of table containing where level shifts were detected and the assumed gate that was operated.
A 1 indicates that the measurement for the respective location experienced a level shift at that time, whereas
a 0 indicates there was not a level shift for that measurement data.

3.2.2 Other Methods

Derivative Method

Another method to detect significant shifts in water level and flow rate is to identify points where the
change in measurement between time steps exceeds some threshold. Using the smoothed data, we calculate
the derivative, or change in value from t0 to t1 (Equation 3.8).

∆ypt0q “ ypt1q ´ ypt0q (3.8)

The points where ∆yptq exceeds the standard deviation of the derivative for that location will be considered
a level shift.

Trend Filter Cycle

Using the trend filtering algorithm described in Section 3.1.3, we can use the cycle information to estimate
when the level shifts occur. The method applies the same algorithm as the derivative method, though rather

11
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than using the time series data, we apply the derivative method to the cycle data. By definition, the cyclical
component cptq “ yt ´ τt, which is the amount the measurement yptq deviates form the long term trend, τt.
Level shifts will occur when the value of cptq increase or decrease suddenly and rapidly. To evaluate where
level shifts occur in the long term trend occur, we can calculate the difference between each time step of ct
and located the time points where the cyclical component exceeds some threshold.

Multivariate Detection

This method detects system-wide anomalies rather than anomalies at individual locations. The goal of
multivariate anomaly detection is to find violations of the usual relationship between measurements at in-
dividual locations. The input for multivariate anomaly detection are multiple time series, and the output
is specific indices (times) that are considered outliers of the system. For example, since our locations are
connected via one-directional waterways, we expect that when flow rate increases upstream, it also increases
at downstream measurement locations. Multivariate anomaly detection finds violations to this usual rela-
tionship.

We use ADTK OutlierDetector algorithm for this method [26]. We start with an input of 5 time series
from measurement locations at facilities A-D in our target canal. Each index is converted to a 5-dimensional
point, where the coordinates consist of all the measurements at that specific index. Next, we compute the
local density of each point, which is estimated by the typical Euclidean distance at which a point can be
”reached” from its k-neighbors. For our experiments, we used k “ 20 neighbors, which is the default for
the ADTK algorithm. We then assign a score to each point, which measures the deviation of the local
density of each point to its k-neighbors. We identify points that have a significantly lower local density than
its neighbors as outliers. Note that “neighbors” is not defined by time between indices or space between
measurement locations, but by Euclidean distance between our new 7-dimensional points.

Figure 10 shows the algorithm run on one month of data from the A-D canal. Notice that anomalies
correspond with changes in the time series relative to the others. For example, the first anomaly occurs when
d1 WaterLevel and d2 WaterLevel increase while the other measurements stay roughly constant or decrease.
The anomalies tend to occur in groups which may signal both the start of an event (gate change) and the
end of an event (measurements return to an equilibrium where all measurements are constant). Figure 10(b)
shows that when measurements stay roughly constant, they tend to form clusters (note that that the figure
only shows 2 out of 5 coordinates). However, when one or several measurements begin to change, this can
create outliers from the clusters. This method can also be used to track violations of the usual relationship
between heads and tails of irrigation canals as in Figure 11, which can reveal water shortages or water usage
patterns.
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(a)

(b)

Figure 10: Multivariate anomaly detection. (a) Detected anomaly (red vertical line) in A-D canals over one
month (b) Plotting two of the coordinates as points where a1 FlowRate is the x-coordinate and d1 WaterLevel
is the y-coordinate. The outliers have a significantly lower density that their neighbors. The true points have
5 coordinates and cannot be visualized.

Figure 11: Multivariate anomaly detection on d1 WaterLevel and d2 WaterLevel (head and tail of irrigation
canal through farmland) over full time

Gate Detection Method Comparison

After gathering sets of indices for each of the methods for level shift detection, we apply post processing
methods to group together the indices that are a part of the same level shift or ‘event’. This is done to more
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Metric Location Method
Level shift Derivatve Trend cycle Multivariate

Suceessful Detection a1 31 (96%) 22 (69%) 26 (81%) -
b1 17 (71%) 11 (46%) 13 (54%) -
c1 27 (96%) 16 (57%) 20 (71%) -
d1 24 (89%) 18 (67%) 17 (63%) -
all - - - 64%

Table 2: Number of correct and incorrect level shift detection points by location and method.

easily compare the detected level shifts with the manually detected level shifts. The ‘ruptures’ level shift
detection algorithm outputs a single time stamp per estimated level shift. The other methods (derivative,
trend cycle, and multivariate methods), however return several timestamps that all correspond to the same
level shift or ‘event’. For example, since the value of flow rate and water level will increase over several
time steps after a gate operation, the magnitude of the derivative and cptq value, will be elevated for several
time steps. Similar to level shift grouping methods described in Section 3.2.1, we iterate through the list of
timestamps and group together points that are within 20 time-steps. Only the first index of each group is
kept as the estimated level shift.

To evaluate the accuracy, we iterate through the manually detected level shifts and determine whether or
not that level shift was detected by each algorithm. We count how many level shifts were correctly detected
and how many were incorrectly detected, i.e., how many shifts were detected that did not appear in the
manually detected list.

Since there is variation in the exact time that the level shift was detected, we will search for any level
shifts in a range around the manually detected level shift (20-time step interval). We combine the list of
detected level shifts at each location. For example, since we apply each method to each time series separately,
we combine the shifts for a1 flow rate and a1 water level since they are related to facility A. We do the same
for d1 flow rate and water level. The number of level shifts that were successfully detected using each method
is shown in Table 2. By applying the ‘ruptures‘ level shift detection algorithm and specifying an estimate for
the number of gates we suspect to have occurred throughout the time series data, we obtain a list of gate
operations.

3.3 Classifying Cause of Gate Operation

After detecting the locations and times that gate operations occur, we classify the cause of a gate operation
as water shortage, surplus, or scheduled (i.e. it was not caused by perceived changes in the measurements).
That is, we want to understand why each gate was operated so that future water gate management can be
automated to replicate the current strategy.

3.3.1 Feature-Based Clustering

The goal of clustering the time series is to understand how to group the patterns before gate operations,
so that we can classify the causes of each gate operation. With future data, this helps us identify patterns
in the data that indicate when a gate operation should occur. We used our method on facilities A-D and
considered all gate operations in facilities A-D and measurements a1 flow rate, b1 flow rate, c1 flow rate,
d1 water level and d2 water level. To cluster the gate operations, we first normalized the data and then
segmented one day (144 time steps) before each gate operation. Thus, for each gate operation, we had 5
segments. For each segment, we computed four basic features: mean, range, slope of a linear regression, and
standard deviation.

We then used k-means clustering on the feature vectors, which is an iterative process that partitions
vectors into k clusters with the nearest mean. To choose the number of clusters, we considered both our

14



Page 15 of 42 G-RIPS Sendai 2024, IHI Group

goals (how many classifications we wanted) and the silhouette score of each clustering process. The silhouette
score measures cluster quality (how similar an object is to its own cluster versus objects in other clusters).

We applied k-means clustering to the feature vectors in two different ways. The first was to concatenate the
4 features on all 5 segments together, so that each gate operation was associated with a 20-coordinate feature
vector. This method seeks to directly cluster and classify the gate operations itself. Through experimentation,
we found that the optimal number of clusters was 9 (the silhouette score increased until 9 clusters and then
began to diminish at 10 clusters). Thus, each gate operation was assigned a number from 0-8.

The second method clusters the segments at each measurement location separately so that each location
receives its own cluster number. All segments were classified together so that cluster numbers could be
directly compared across locations. Using this method, we can indirectly classify gate operations by first
clustering and classify the time series of individual water measurement points. This will provide more clarity
as to which canal locations are the cause of gate operations. Using the silhouette score, we determined that
only two mean and slope with four clusters would optimize the clusters formed. The quantification of each
cluster is shown in Figure 12.

Figure 12: Quantification of univariate clusters using slope and mean.

3.3.2 Comparing Feature Based Clustering

In Table 3, we show an sample of the results after using the two described methods for feature based
clustering. For each gate operation, we show the gate operated, the date and time, the cluster number
(0-4) for each independent measurement location, and the gate operations classification from concatenating
features (column ‘Clusters’).

We also compare these clusters with detected shortages. We can combine this information to determine
if there are trends in the collection of cluster numbers and the gate that was operated. In Figure 13, we
determine the frequency that each gate is operated for different patterns. This can help us determine in which
circumstances each gate should be operated. For example, when we have many locations being clustered as
‘2’ (large negative slope), this may indicate declining water availability. Of the 3 instances where the cluster
collection is dominated by ‘2’, gate D was operate 66% of the time.

Future gate management could then use this information to know to operate gate D when water values
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are decreasing significantly. This is one example of how to use this information, but expert knowledge can
be used to understand the meaning of the cluster patterns. The cluster patterns can also be used to bring a
qualitative understanding to the cluster number that uses several features across multiple locations.

Figure 13: Frequency of cluster patterns.

3.3.3 Linear Regression Classification

During the clustering process, we noticed that the most important feature for deciding the cause of a gate
operation was the slope, and we are most interested in whether the measurements are increasing, decreasing,
or near constant before and after a gate operation. We tried classifying each gate operation directly based
on slope. We input all the time series for our canal of interest (in this case, A-D) and the indices for the
suspected gate operations. We compute the slope of the linear regression for each time series during a segment
of 144 indices (one day) before and after a detected gate operation. We then assigned the segment a value of
-1 (decreasing), 1 (increasing), and 0 (near-constant).

We decided on a threshold for near-constant of 0.001, but this can be adjusted based on how the operator
defines “increasing” and “decreasing.” Since gate operations can be influenced by measurement locations
nearby, we wanted a complete picture of all the measurement locations in the system at the time of the gate
operation. For each gate operation, we obtain two vectors whose entries are -1, 1, and 0: one vector for
“before” the operation and one vector for “after” the operation. This allows us to see at a glance which
directions are changing before and after a gate operation.

To further investigate, we visualize the classifications by plotting each time series for 2 days before and
after the gate change. We color the day before and after blue for surplus, red for shortage, and green for
near-constant. Figure 14 shows classifications before and after a suspected gate change at index 16900. We
suspect the gate operation occurred at facility B or C and was due to a shortage. The resulting vectors for
“before” and “after“ respectively are:
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If we can find gate changes with similar “before” and “after” vectors, we can identify patterns that indicate
when a gate change should happen and its result. We then cluster the 14-dimensional vector associated with
each gate operation to obtain one cluster for each gate.

16



Page 17 of 42 G-RIPS Sendai 2024, IHI Group

Index Time Gate a1 FR b1 FR c1 FR d1 WL d2 WL Cluster Shortage

55 4/16/2023 9:20 A 0 0 0 0 1 4
219 4/17/2023 12:40 C 0 0 0 0 1 4
339 4/18/2023 8:40 A 0 0 0 0 1 4 X
515 4/19/2023 14:00 A 0 0 0 0 0 3
640 4/20/2023 10:50 A 0 0 0 0 0 3
774 4/21/2023 9:10 C 0 0 0 0 0 3
910 4/22/2023 7:50 – 0 0 0 0 0 3 X
1090 4/23/2023 13:50 – 0 0 0 0 0 3 X
1212 4/24/2023 10:10 D 0 0 0 0 0 3
1360 4/25/2023 10:50 A 0 0 0 0 0 3
1404 4/25/2023 18:10 A 0 0 0 0 0 3
2369 5/2/2023 11:00 C 0 0 0 0 0 3
4030 5/13/2023 23:50 A 0 0 0 0 0 3
4275 5/15/2023 16:40 A 0 0 0 0 0 3
4350 5/16/2023 5:10 A 0 0 0 0 0 3
4505 5/17/2023 7:00 D 0 0 0 0 0 3
4534 5/17/2023 11:50 B 0 0 0 0 0 3
5849 5/26/2023 15:00 C 0 0 0 0 0 3
6845 6/2/2023 13:00 A 0 0 0 0 0 3
6887 6/2/2023 20:00 D 2 2 0 0 0 2
6965 6/3/2023 9:00 A 3 2 2 0 2 2 X
7089 6/4/2023 5:40 C 3 3 3 0 3 2
7145 6/4/2023 15:00 A 0 0 0 0 0 3
7220 6/5/2023 3:30 A 2 0 0 0 0 3
7254 6/5/2023 9:10 A 1 0 0 0 0 3
7570 6/7/2023 13:50 A 0 0 0 0 0 3
7837 6/9/2023 10:20 D 0 0 0 0 0 3
8539 6/14/2023 7:20 C 0 0 0 0 0 3
8550 6/14/2023 9:10 A 0 0 0 0 0 3
9555 6/21/2023 8:40 B 0 0 0 0 0 3

Table 3: Sample table of gate operations, the univariate clustering, and the feature clustering with concate-
nated vector.
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Figure 14: Classifying the slope of the linear regression for segments before and after a suspected gate change
at index 16900. 0 is near-constant, 1 is increasing, -1 is decreasing.

3.3.4 Neural Networks

A neural network (also known as an artificial neural network or ANN) is an adaptive system that uses
nodes, or neurons, interconnected in a layered structure similar to the human brain to perform learning.
Neural networks can learn from data, so they can be trained to recognize patterns, classify data, and predict
future events. Using data from b1 to f1 and Manual Classification, we created a learning model that classifies
into five classes: “surplus”, “shortage”, “normal”, “No gate operation” and “others”. Similar to ”Manual
Classification”, this classification focuses on ”gate operation.” ”normal” is used when a level shift was detected
during manual classification, but the reason could not be determined.

To train the data, we created a sequence by taking three days as one sequence and shifting the start date
by one day. Specific example: April 16th, 17th, and 18th data will be Sequence 1. Next, April 17th, 18th,
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and 19th data will be Sequence 2. Total number of sequences is 165.
The reason for setting the range to 3 days is that the definition of ”shortage” is a decrease in the

measured quantities that persists for several days as defined in Section 2.2.3. The labeling method was based
on whether or not F gate operation occurred on the third day of sequence. For example, according to the
Manual Classification, a F gate operation due to ”shortage” is performed at the change point on the third
day of Figure 15(a). The channels in Figure 15 are a1’s Flow Rate, a1’s Water Level, b1’s Flow Rate, c1’s
Flow Rate, d1’s Flow Rate, d1’s Water Level and d2’s Water Level from the top. Now label this sequence
as ”shortage.” In a case like Figure 15(b), according to the Manual Classification, there is no gate operation
on the third day, so we label it as ”others.”

(a) Manual Classification ; shortage, Model Classification
; shortage

(b) Manual Classification ; others, Model Classification
; shortage

Figure 15: (a) Before. (b) After.

Figure 16 shows a classification result of data from b1 to f1. The results of manual classification and that
of trained model are compared. Each number inside the square indicates the number of sequences it contains.
For example, if Manual Classification is ”others” and model classification is ”shortage”, it corresponds to the
square written as 11. It doesn’t match completely and the correct percentage is 79 percent. For the reason,
the first possibility is that the same signal may be counted twice. This is due to the way the sequence is
taken. The second possibility is that we only labeled f1. There was a possibility that signals such as ”surplus”
were occurring elsewhere, which is why there was such a discrepancy.

As a solution, we came up with an idea of using other gate operation and classification data as training
data. It may become possible to determine which gate was operated by the f1 signal. We also used LSTM
(Long Short-Term Memory) as a neural network. We can determine the amount of data to be stored by
setting parameters. If this characteristic can be used to store data 2 to 3 days prior to the gate operation
signal, it may be possible to perform more accurate classification. We built a learning model that included
all upstream observation data. The result was as shown in Figure 17 (a). The correct percentage was 83
percent, which was better than the previous result.

Furthermore, in order to see the relationship between each gate, we performed classification using a
learning model that excluded data from each gate, and the results of the learning model that excluded data
from gate B became interesting. The result is shown in Figure 17 (b), and the correct percentage is 82
percent. From this result, it can be concluded that the influence of gate B on gate D is extremely small.
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Figure 16: The vertical line shows Manual Classification and the horizontal line shows leaning model results.

(a) (b)

Figure 17: (a) Whole data. (b) Except b1 FlowRate.

3.3.5 Water Shortage Identification

Here, we introduce a method to detect options for water shortages and water surpluses by using derivatives
and values.

The first program is to detect the end point of water shortages at d2 to help classify gate operations.
Figure 18 is made by the following algorithm. First, we made a list of points that keep decreasing or the
value is smaller than some constant. Then, we extract endpoints. We applied the same kind of program for
water surplus (Figure 19).
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Figure 18: Options of the endpoint of water shortages at d2

Figure 19: Options of the endpoint of water surpluses at d2

The second program is to detect water shortages which were caused only by increasing water demand
between d1 and d2. At these points, the operator probably should have operated the gate. Figure 20 shows
points that the water level at d2 keeps decreasing and is lower than some constant, or lower than another
constant. We applied the same program to the water level at d1 (Figure 21). Figure 22 shows the result by
subtracting the second one from the first one.
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Figure 20: Points at d2

Figure 21: Points at d1

Figure 22: After subtracting
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3.4 Identifying trends

In addition to identifying gate operations and classifying their cause, we also want to understand trends
at each location and in the whole water system.

3.4.1 Trends at One Location

We return to feature clustering described in Section 3.3.1. We consider a time series at one location and
use a moving window of 1 days (with offset of 1/2 day) to obtain 334 segments for each time series. We do
not normalize the data, since we only compare measurements at one location. We then computed features
(slope, mean, standard variation, and range) for each segment and used k-means clustering to find clusters.
We used the silhouette score to determine the number of clusters and found for each of the 5 locations, 5-6
clusters were optimal.

In Figure 23, we show the algorithm run on a1 flow rate, c1 flow rate, and d1 flow rate over the whole
time series. Clustering at one location allows us to identify both recurring and unusual trends. For example,
in a1 WaterFlow, we see that there are two different periods of oscillating levels. In the first period (blue),
we’ve identified that it is around the time of the start of the rainy season, and so the dam gate may have
opened and closed rapidly to adjust to the changing waterfall. The second period (yellow) corresponds to
the rice harvest season, and so the dam opens and closes at more regular intervals to allow water to reach
different irrigation canals and maintain the flow to farmland. However, the cluster (red) is by the far the
most common cluster and recurs several times during the time period studied.

For each time series, we can also obtain a list of clusters in order, as shown in Figure 23(d). We can then
perform statistical analysis on this list, such as the maximum run length of a cluster. A larger maximum
run length suggests that a time series has a longer period of consistent values. A very small maximum run
length suggests that a time series moves frequently between different clusters, which might suggest a more
erratic time series.

3.4.2 Trends at Multiple Locations

To find trends at multiple locations, we considered our measurement locations as part of a multivariate
system. We considered each time step as a multi-dimensional point whose coordinates come from each
location. For example, when considering 5 measurement locations from Facilities A-D, we obtained 24132
5-dimensional points. We also normalized the measurements for each location, so that one location did not
skew the results. We have two methods for analyzing the data: clustering and anomaly detection.

When clustering, we use k-means clustering as before. We also use the silhouette score to determine
the optimal number of clusters. In most cases, 5-6 clusters were optimal. Figure 24 shows the clustering
algorithm run on 5 locations from the A-D canal over a period of one month. Also included is a 2-dimensional
graph showing only a1 FlowRate and d1 WaterLevel and the cluster colors assigned. Points (time stamps)
with similar measurements tend to cluster together, so we can see if there are recurring patterns in the
measurements when taken together.

We see that the clusters change when there is a significant shift at one or several locations. We can use
this information in two ways: First, we can detect that significant events have occurred when the cluster
changes (such as a gate operation). We call these cluster change points. Figure 24(c) shows the indices where
the clusters change in canals A-D over the whole time period. Note that these indices are highly dependent
on the number of clusters, and we will get more indices if we choose a larger number of clusters.

Second, we can use the clusters to learn about the behavior of the canal system around a gate operation.
For example, at index 18902 and index 14907, we manually detected a gate change at facility D caused by a
surplus. After multivariate clustering, both points were put in the same cluster. This indicates that there is
a common pattern before facility D is operated when there is a surplus in the system. However, more work
is needed to understand what these clusters represent.
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(a)

(b)

(c)

(d)

Figure 23: (a)-(c) Clustering the time series into 5 clusters based on 4 features: slope, mean, range, and
standard deviation. Note that the data is not normalized, since we are not comparing time series. (d) List
of clusters for d1 Flow Rate.
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(a)

(b)

(c)

Figure 24: (a) One month of data from A-D facilities clustered into 5 clusters by multivariate clustering.
Colors indicate cluster. (b) Plotting two of the coordinates as points where a1 flow rate is the x-coordinate
and d1 WaterLevel is the y-coordinate with 5 clusters. Note that the points are 5-dimensional but only 2
coordinates are shown, so some clusters appear more similar than they are. (c) Indices where clusters change
in canals A-D over the whole time period.
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3.4.3 VAR-LiNGAM Causal Discovery

VAR-LiNGAM is an extension of basic LiNGAM to analyze time series data. The word VAR means
Vector Auto Regressive. Mathematically, the model is written as

xptq “

k
ÿ

τ“0

Bτxpt ´ τq ` eptq, (3.9)

where xptq P Rn is variables, eptq is error variables, and Bτ is coefficient matrix with time lag τ P r0, ks.
There are several approaches for estimating the parameters as described in [27]. In Appendix B, we will
explain the outline of the Two-Stage Method, which is one of the approaches. Lag time τ should be the
maximum value in delays between measurement points. In essence, the calculation can be reduced to a VAR
model.

When we use VAR-LiNGAM, it requires the following 4 assumptions:

1. Linearity,

2. Non-Gaussian continuous error variables (except at most one),

3. Acyclic of contemporaneous causal relations,

4. No hidden common causes between contemporaneous error variables.

As assumed in Section 2.2.2, the network we are considering does not have directed cycles, therefore the
third assumption is satisfied. As for the other assumptions, they are anticipated to be greatly influenced
by the preprocessing (smoothing) methods described in Section 3.1.3. Their impact will be investigated in
this section by using the following hypothesis test: Hilbert-Schmidt independence criterion (HSIC) test and
Shapiro–Wilk test.

Next, we will show three results. we applied the VAR-LiNGAM model to preprocessed data collected
over a period of 4 weeks from July 1 to July 28. In that season, farmers use a massive quantity of water.

For smoothing, we removed spikes by applying one of ”moving mean with window size 6”, ”moving median
with window size 6”, and ”trend filter.” After that, we standardized the data so that they have a mean of 0
and a standard deviation of 1.

How VAR-LiNGAM Works

Moving Mean with Window Size 6

First, we will show results of moving average with window size 6. We used data from July 1 to July
28. The estimated lag time is 8. It is automatically estimated by the VAR-LiNGAM package. As for the
adjacency matrices, please refer to Appendix B. Figure 25 shows the result of predicting time series.

After calculating lag time and adjacency matrices, we apply two tools to verify them. The first tool is the
Hilbert-Schmit independence criteria (HSIC test) for the independence of each noise eiptq. VAR-LiNGAM
requires that ”No hidden common causes between contemporaneous error variables.” When the result of
HSIC (probability value) does not reject the null hypothesis, we don’t have hidden causes and satisfy one
assumption.

Figure 26 shows a heat map of the matrix, where each value is represented with a significance level of
0.05. By this result, at a significance level of approximately 0.05, we can confirm that moving average meets
one of the assumptions that no hidden common causes between contemporaneous error variables.

The second tool is the Shapiro-Wilk test for Non-Gaussian continuous error variables (Figure 27). We set
some significance levels. When the back is gray, it means they meet the assumption.
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Figure 25: Results of prediction (preprocessed by moving mean)
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Figure 26: Hilbert-Schmidt Independence Criteria test (preprocessed by moving mean filter)

Figure 27: Shapiro-Wilk test (preprocessed by moving mean filter)

Next, by using bootstrap, we estimate the total effect on each variable. Table 4 shows the list of effects,
sorted in order of probability. We can estimate each effect, probability, and lag. The probability refers to the
proportion of total effects from from to to that were non-zero, and the effect refers to the median of these
non-zero total effects. For example, at No.29, the flow rate at b1 has an effect 0.269016 on a1 with lag7,
and the probability is 0.98. It means more than 98 percent of every point have the median of these effects is
0.269016.

28



Page 29 of 42 G-RIPS Sendai 2024, IHI Group

No effect probability from to lag

0 -0.095987 1.00 d2 WaterLevel d2 WaterLevel lag8
1 -0.117510 1.00 a1 FlowRate a1 FlowRate lag8
2 -0.471616 1.00 a1 FlowRate a1 FlowRate lag6
3 0.082157 1.00 a1 FlowRate b1 FlowRate lag1
4 1.793416 1.00 b1 FlowRate b1 FlowRate lag1
5 -0.065689 1.00 a1 FlowRate b1 FlowRate lag2
6 -0.719023 1.00 b1 FlowRate b1 FlowRate lag2
7 -0.152706 1.00 b1 FlowRate b1 FlowRate lag4
8 -0.314752 1.00 b1 FlowRate b1 FlowRate lag6
9 0.768102 1.00 b1 FlowRate b1 FlowRate lag7
10 -0.035959 1.00 a1 FlowRate b1 FlowRate lag8
11 -0.374023 1.00 b1 FlowRate b1 FlowRate lag8
12 1.197097 1.00 c1 FlowRate c1 FlowRate lag1
13 -0.509836 1.00 c1 FlowRate c1 FlowRate lag6
14 0.605447 1.00 c1 FlowRate c1 FlowRate lag7
15 -0.153987 1.00 c1 FlowRate c1 FlowRate lag2
16 1.032371 1.00 d1 WaterLevel d1 WaterLevel lag1
17 0.532379 1.00 d2 WaterLevel d2 WaterLevel lag7
18 -0.511730 1.00 d2 WaterLevel d2 WaterLevel lag6
19 1.062264 1.00 d2 WaterLevel d2 WaterLevel lag1
20 1.129086 1.00 a1 FlowRate a1 FlowRate lag1
21 0.422287 1.00 b1 FlowRate a1 FlowRate lag1
22 -0.146788 1.00 c1 FlowRate c1 FlowRate lag8
23 0.559796 1.00 a1 FlowRate a1 FlowRate lag7
24 -0.096752 1.00 a1 FlowRate a1 FlowRate lag2
25 -0.498998 1.00 d1 WaterLevel d1 WaterLevel lag6
26 0.030955 1.00 d2 WaterLevel d1 WaterLevel lag1
27 0.479416 1.00 d1 WaterLevel d1 WaterLevel lag7
28 -0.444514 0.99 b1 FlowRate a1 FlowRate lag2
29 0.269016 0.98 b1 FlowRate a1 FlowRate lag7

Table 4: Effects and probabilities of various variables with different lag times (preprocessed by trend filter).

Moving Median with Window Size 6

Second, we will show results of using a moving median with a window size 6. The estimated lag time is 7.
Figure 28 shows the result of applying VAR-LiNGAM. The result of HSIC test for the independence of

each noise eiptq is shown in Figure 29. Figure 30 shows the results of the Shapiro-Wilk test (focus on the
water level at d1). Table 5 shows the list of effects and probability.
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Figure 28: Results of prediction (preprocessed by moving median filter)
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Figure 29: Hilbert-Schmidt Independence Criteria test (preprocessed by moving median filter)

Figure 30: Shapiro-Wilk test (preprocessed by moving median filter)
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No from to effect probability from var to var from lag

0 39 4 0.161662 1.00 d2 WaterLevel d2 WaterLevel lag7
1 35 0 0.269674 1.00 a1 FlowRate a1 FlowRate lag7
2 6 1 1.782726 1.00 b1 FlowRate b1 FlowRate lag1
3 32 2 -0.288218 1.00 c1 FlowRate c1 FlowRate lag6
4 30 0 -0.265764 1.00 a1 FlowRate a1 FlowRate lag6
5 37 2 0.262726 1.00 c1 FlowRate c1 FlowRate lag7
6 8 3 0.867672 1.00 d1 WaterLevel d1 WaterLevel lag1
7 33 3 -0.214354 1.00 d1 WaterLevel d1 WaterLevel lag6
8 38 3 0.246195 1.00 d1 WaterLevel d1 WaterLevel lag7
9 7 2 1.043355 1.00 c1 FlowRate c1 FlowRate lag1
10 34 4 -0.154796 1.00 d2 WaterLevel d2 WaterLevel lag6
11 11 1 -1.039581 1.00 b1 FlowRate b1 FlowRate lag2
12 5 0 1.088091 1.00 a1 FlowRate a1 FlowRate lag1
13 9 4 0.935843 1.00 d2 WaterLevel d2 WaterLevel lag1
14 5 1 0.074092 0.98 a1 FlowRate b1 FlowRate lag1
15 8 4 0.042818 0.97 d1 WaterLevel d2 WaterLevel lag1
16 8 2 0.002066 0.97 d1 WaterLevel c1 FlowRate lag1
17 9 2 0.009723 0.97 d2 WaterLevel c1 FlowRate lag1
18 4 2 0.065230 0.96 d2 WaterLevel c1 FlowRate lag0
19 39 2 0.007527 0.96 d2 WaterLevel c1 FlowRate lag7
20 34 2 -0.009103 0.96 d2 WaterLevel c1 FlowRate lag6
21 9 3 0.028833 0.94 d2 WaterLevel d1 WaterLevel lag1
22 12 2 -0.061300 0.93 c1 FlowRate c1 FlowRate lag2
23 6 2 0.261983 0.91 b1 FlowRate c1 FlowRate lag1
24 16 1 0.249780 0.90 b1 FlowRate b1 FlowRate lag3
25 16 2 -0.479593 0.89 b1 FlowRate c1 FlowRate lag3
26 10 0 -0.096222 0.87 a1 FlowRate a1 FlowRate lag2
27 11 2 0.456425 0.84 b1 FlowRate c1 FlowRate lag2
28 5 2 0.017198 0.82 a1 FlowRate c1 FlowRate lag1
29 5 3 0.051435 0.78 a1 FlowRate d1 WaterLevel lag1

Table 5: Effects and probabilities of various variables with different lag times (preprocessed by moving median
filter).

Trend Filter

Finally, we will show results of trend filter. Figure 31 shows the result of applying VAR-LiNGAM.
Figure 32 shows a heat map of the result of the HSIC test. Figure 33 shows the result of Shapiro-Wilk Test.
Table 6 shows the list of effects and probability.
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Figure 31: Results of prediction (preprocessed by trend filter)
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Figure 32: Hilbert-Schmidt Independence Criteria test (preprocessed by trend filter)

Figure 33: Shapiro-Wilk test (preprocessed by trend filter)
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No from to effect probability from var to var from lag

0 5 0 2.058925 1.00 a1 FlowRate a1 FlowRate lag1
1 22 2 0.325477 1.00 c1 FlowRate c1 FlowRate lag4
2 12 2 -1.960476 1.00 c1 FlowRate c1 FlowRate lag2
3 7 2 2.634759 1.00 c1 FlowRate c1 FlowRate lag1
4 8 3 2.631244 1.00 d1 WaterLevel d1 WaterLevel lag1
5 13 3 -1.956770 1.00 d1 WaterLevel d1 WaterLevel lag2
6 6 1 2.649720 1.00 b1 FlowRate b1 FlowRate lag1
7 9 4 2.971761 1.00 d2 WaterLevel d2 WaterLevel lag1
8 14 4 -2.952649 1.00 d2 WaterLevel d2 WaterLevel lag2
9 11 1 -1.979562 0.99 b1 FlowRate b1 FlowRate lag2
10 19 4 0.980942 0.99 d2 WaterLevel d2 WaterLevel lag3
11 10 0 -1.062003 0.87 a1 FlowRate a1 FlowRate lag2
12 21 1 0.329877 0.82 b1 FlowRate b1 FlowRate lag4
13 23 3 0.325297 0.78 d1 WaterLevel d1 WaterLevel lag4
14 21 0 0.024187 0.77 b1 FlowRate a1 FlowRate lag4
15 6 2 0.002311 0.76 b1 FlowRate c1 FlowRate lag1
16 16 3 -0.000873 0.73 b1 FlowRate d1 WaterLevel lag3
17 6 3 0.000942 0.72 b1 FlowRate d1 WaterLevel lag1
18 17 3 -0.000066 0.68 c1 FlowRate d1 WaterLevel lag3
19 17 4 -0.000256 0.61 c1 FlowRate d2 WaterLevel lag3
20 21 4 0.001497 0.61 b1 FlowRate d2 WaterLevel lag4
21 18 0 0.000024 0.58 d1 WaterLevel a1 FlowRate lag3
22 15 4 -0.000088 0.56 a1 FlowRate d2 WaterLevel lag3
23 11 0 -0.030166 0.56 b1 FlowRate a1 FlowRate lag2
24 13 4 0.000075 0.54 d1 WaterLevel d2 WaterLevel lag2
25 7 4 0.000665 0.52 c1 FlowRate d2 WaterLevel lag1
26 11 2 -0.005469 0.52 b1 FlowRate c1 FlowRate lag2
27 11 4 -0.001182 0.51 b1 FlowRate d2 WaterLevel lag2
28 19 2 -0.000019 0.50 d2 WaterLevel c1 FlowRate lag3
29 19 3 -0.000065 0.47 d2 WaterLevel d1 WaterLevel lag3

Table 6: Effects and probabilities of various variables with different lag times (preprocessed by trend filter).

Which Preprocessing is Better for VAR-LiNGAM

In this paragraph, we compare the three result. By comparing the results of the HSIC (Figure 34), we
conclude that the result of the moving average is the best and that of the moving median is the worst. As
original data is the same, these differences are caused by how we preprocessed the data.

Table 7 shows the variances of prediction errors. The variance of trend filter is extremely small. This
means a better result in terms of fitting. However, over smoothing can be detrimental to hypothesis tests for
common causes between the error variables.
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(a) Moving average. (b) Moving median. (c) Trend filter.

Figure 34: Comparison of each heat map.

Point mean median trend

a1 FlowRate 0.000301 0.001329 1.407542e-09
b1 FlowRate 0.000014 0.000037 1.151261e-10
c1 FlowRate 0.001287 0.002369 6.823062e-09
d1 WaterLevel 0.002314 0.004385 1.434665e-08
d2 WaterLevel 0.005657 0.013354 2.237900e-08

Table 7: Variance of errors

Evaluating Effects of Each Value

In the previous paragraph, we compared the results from three preprocessed methods. Next, we will
elaborate each effect focusing on the water level at d1. Using bootstrap, we list effects on each point.
Figure 35 shows the result of applying VAR-LiNGAM. This means the value of d1 is influenced by the value
of d1 from time step earlier with the effect 1.066, the value of d1 from 6 steps earlier with the effect -0.510,
and the value of d1 from 6 steps earlier with the effect 0.537.

From the result, VAR-LiNGAM could capture very reasonable facts that the value of d1 is most influenced
by the value of d1 from one time step earlier, and other values mean are not dominant. As shown in Figure 36,
other matrices shows similar results. This phenomenon occurs at 4 points out of 5 points from a1 to d2.
When we try different passes, from a1 to j2, a1 to g2, and a1 to h1, we obtain the same results in almost all
location except b1. The influence observed at 6 and 7 steps earlier is assumed to be due to the time delay
introduced by preprocessing.
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Figure 35: Effects on d1

(a) Effects on d1 (b) Effects on c1 (c) Effects on a1

Figure 36: Effects

4 Discussion

4.1 Insights from Detection Methods

The detection of gate operations using level shift detection methods proved effective in identifying sig-
nificant changes in water levels that correspond to gate operations. The univariate feature-based cluster-
ing method provided a straightforward approach to detecting these shifts, while the multivariate clustering
method offered more nuanced insights by considering multiple variables simultaneously.

Manual detection of gate operations was important for validating automated methods. Our comparison
of some detection methods demonstrated that automated techniques could replicate the accuracy of manual
detection, reducing the need for constant human oversight.

4.2 Classifying Cause of Gate Operation

Univariate Feature-Based Clustering segments time series data into clusters based on specific features
such as slope, mean, range, and standard deviation. By analyzing patterns before gate operations, we can
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distinguish periods of surplus or shortage. The method involves two main strategies: clustering individual
time series and segmenting time series before anomalies. Both strategies show promise in identifying critical
patterns that lead to gate operations.

Linear Regression Clustering uses linear regression to cluster data points, providing a clear representation
of the relationship between different measurements. It helps in understanding how changes in one variable
may influence others, thus aiding in identifying the causes of gate operations more accurately.

By considering multiple variables simultaneously, this method offers a comprehensive view of the factors
influencing gate operations. It employs anomaly detection in a multivariate space, identifying points with
significantly different densities compared to their neighbors. This approach is effective in spotting complex
interactions between various measurements that precede gate changes.

Leveraging the power of neural networks, this method provides a sophisticated tool for classifying gate
operations. Neural networks can capture intricate patterns in the data, offering high accuracy in predicting
the causes of gate operations. This method shows potential for automating the classification process with
minimal human intervention.

Overall, our study demonstrates that automated techniques, particularly those involving clustering and
neural networks, can effectively replicate the accuracy of manual detection. These methods reduce the need
for constant human oversight, thus enhancing the efficiency and reliability of water management systems.
Future work will focus on refining these techniques and integrating them into operational workflows to
optimize gate operations and minimize water shortages and surpluses.

4.3 Identifying trends

Clustering using used k-means considering information on one location or multiple locations allowed us
to identify both recurring and unusual trends. The clustering at multiple locations can indicate that there
is a common pattern before any facility is operated when there is a surplus in the system. The method
makes it possible to visualize canal status, allowing operators to understand whether something is normal
or abnormal at a glance even without any knowledge of mathematics. VAR-LiNGAM, which is a tool of the
causal discovery, found more detailed causal relationships such as effects of the last few minutes.

5 Further research

Future research should challenge other models with more diverse data sets to create better models. In
addition, the inclusion of other components of the water management system, such as pumps and spillways,
would further increase the efficiency of the overall system. Furthermore, there is still room to investigate the
impact of meteorological (weather) data, which is strongly related to climate change.

By continuing to develop and validate these automated methods, we can contribute to more sustainable
and resilient water management practices, addressing the challenges posed by climate change and increasing
water demand.

6 Conclusion

In order to use water efficiently, this study analyzed irrigation canal flow rates and water levels over a
period of approximately six months. Comparison between several methods indicated that level shift detection
can adequately replace manual detection, particularly in identifying gate operations. Furthermore, it is
suggested that methods similar to those addressed here show promise for the classification of gate operations.
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Appendix A: Executive Summary

Table 8 shows the objectives of this study, each main result, and future challenges (this part was edited
by industrial mentors after the submission).

Objectives Achievement/Methods Main contribution Future work
Prepare the dataset
for analysis

++ / Manual data
preparation

Sensor data was visualized for
the upstream of the target
canal, and the timing of gate
operation was recorded.

Comparing with ac-
tual operation tim-
ing. Expanding the
network to record.

+++ / Data cleaning
and smoothing

Smoothing performance was
compared using multiple
smoothing methods and
parameter settings.

N/A

Identify gate opera-
tion events

+++ / Level shift de-
tection

Methods for detecting and la-
beling significant water flow
changes considering the direc-
tion of waterways were devel-
oped.

N/A

+++ / Comparison
with several filters

Verification using manual de-
tection results showed that
the level shift method had
high accuracy in detecting
significant shifts.

Increase sample size
of datasets and fur-
ther validation.

Classify cause of gate
operation

+++ / Machine
learning such as
feature-based cluster-
ing

Automated techniques such
as clustering demonstrated
that effectively replicate the
accuracy of manual detection.

N/A

++ / Time series
causal discovery

VAR-LiNGAM, one of the
causal discovery tool, found
causal effects in water flows
over the past tens of minutes.

More detailed pa-
rameter studies
and discussions,
especially regarding
smoothing.

Suggest methods to
automation

N/A / Not achieved
due to time running
out

N/A Integrating and em-
bedding into water
management systems
and IoT devices.

Table 8: Executive summary.

The definition of each symbol for Achievement is as follows: +++: Very good, ++: Good, +: Slightly
good, -: Bad, and N/A: Not applicable.
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Appendix B: VAR-LiNGAM

B.1 Estimation procedure

Here, refer to reference [27], we supplement an estimation algorithm for the VAR-LiNGAM parameters
in Equation 3.9. This process can be summarized as following two steps:

1. For xptq in Equation 3.9, estimate coefficient matrices and error variables as a VAR model. By excluding
the components at the same time, i.e., τ “ 0, the classical AR method can be applied.

2. For the calculated eptq, estimate an adjacency matrix B0 using DirectLiNGAM, which is an estimation
method in the original LiNGAM. Using the adjacency matrices obtained above, calculate adjacency
matrices Bτ with each lag τ .

To estimate the optimal lag time k in Equation 3.9, we can use an algorithm based on BIC (Bayesian
Information Criterion). That is, we estimate coefficients of VAR-LiNGAM for each lag time k, and the model
with the smallest BIC among them is selected as the final estimation result.

B.2 Adjacency Matrices calculated in Section 3.4.3

This section is withheld from publication based on the judgment of industrial mentors, considering the
non-disclosure agreement.
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