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Project statement
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Causality

Causality: the statement such as ’A causes B’; we denote it as a relation A → B.
Hence, causal relations generate a causal graph

Figure: Causal discovery

4



Problem statement and proposed solution
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Problem statement and proposed solution

Figure: Problem 1: graphs are inherently
complicated

Figure: Problem 2: graphs are difficult to
compare
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CVD

• Convincingness: Extent to which a suggested model/explanation matches (or
exceeds) a user’s expectation.

• Variety: A set of unique ‘equally good’ explanations/models.

• Discoverability: Extent to which there exist unexpected causal relations between
features and outcomes.

Figure: CVD triangle
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Problem 1: graphs are inherently complex
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Intra-graph analysis

1 Visualization

2 Interactivity

3 Model builder
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Data visualization
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Data visualization
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Data visualization

Figure: Density has a low STD and FSD shows
significant collinearity.

Figure: FSD distribution is slightly skewed.
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Interactivity
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Interactivity

• Color gradient

• Edge styles

• Filter weights
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Interactivity
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Interactivity
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Model builder
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Intra-graph analysis
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Intra-graph analysis

Figure: Selection of a model populates the
parent node(s).

Figure: Selection of a node reveals next
generation and edge information.
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Problem 2: graphs are difficult to compare
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Inter-graph analysis

1 Rate

2 Hierarchies

3 Statistical
validity
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Rate
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Rate

Consider: graph ordering by some indices may reduce feeling overwhelmed by amount
of information and various conclusions from causal graphs.

X : condition
X comes along with rate R(X ).

Roughly speaking, R(X ): the proportion of wines with high quality.
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Rate

Figure: FSD>=54.0 has a 10% level of support
and 0.55 average quality.

Figure: RS<17.8 has a 98% level of support
and 0.64 average quality. It may be worth
investigating this model further.
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Graph hierarchies
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Graph hierarchies
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Graph hierarchies

1 Microscopic - local structure (individual vertices)
• hierarchical levels (HL)
• influence centrality (IC)

2 Mesoscopic - groups or communities
• hierarchical difference (HD)

3 Macroscopic - global structure
• hierarchical incoherence (HI)
• democracy coefficient (DC)
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Graph hierarchies

‘democratic’ +1

‘autocratic’ 0

0 ‘coherent’ +∞ ‘incoherent’

A B

C D

Figure: Democracy coefficient and coherence metrics
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Graph hierarchies
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Graph hierarchies
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Statistical validity
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Statistical validity
Although there are many model fit evaluations, we mainly use

• comparative fit index (CFI)

• root mean square error of approximation (RMSEA)

• Akaike information criterion (AIC)

for simplicity.

Table: Conditions with statistical evaluations and graph hierarchical values

cond CFI RMSEA AIC HI (back) DC (back) HI (fwrd) DC (fwrd)

1 0.929 0.162 16.4 2.21 0.000121 0.263 1.16e-05
2 0.0475 0.338 2.12 1.12 0.000323 0.264 0.000152
3 0.440 0.275 11.8 1.24 0.000123 0.649 0.000753

Is there any correlation between statistical and graph hierarchical values?
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Statistical validity
If there is some correlation, it could provide some support for the indicator.

Table: Correlation coefficients between model fit and graph hierarchical values.

CFI RMSEA AIC HI (back) DC (back) HI (fwrd) DC (fwrd)

CFI 1.00
RMSEA -0.66 1.00
AIC 0.64 -0.96 1.00
HI (back) -0.01 0.01 -0.02 1.00
DC (back) 0.01 0.01 0.00 0.02 1.00
HI (fwrd) 0.01 0.01 -0.01 0.03 0.02 1.00
DC (fwrd) -0.02 0.03 -0.04 0.06 0.18 0.09 1.00

→ Provide model fit indicators after choosing a model according to graph hierarchical
values.
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Statistical validity

• Bootstrapping is a resampling method, and calculates an estimator for each
resample to obtain variances, confidence intervals, etc.

Here we calculate the probability of occurrence of edges and evaluate the confidence of
edges. (0:alcohol, 3:density, 5:free sulfur dioxide, 11:quality)

Table: Example of paths from 0 to 11 and their probabilities.

path effect1 probability

[0, 11] 0.344 1
[0, 3, 11] -0.05 0.03
[0, 5, 11] -0.004 0.02

1effect: median indirect effects occurring in the path
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Statistical validity

For summary

• Statistical evaluations can help some who know statistics, but otherwise
overwhelm.

• Providing them improves convincingness.

• Bootstrapping for each model would be beneficial, but not practical as it would
take time to do and it is difficult to compare with other models.
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Question: how to make decisions
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Causality exploration
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Video demo
Click for video demo
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https://drive.google.com/file/d/1h52RB7nHlXQmPxrEfxqndzhZjMhbZ290/view?usp=sharing


Future directions
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Future directions

For prediction, adding, removing, or conditioning some variables to a model can
sometimes produce discrepancies between the coefficients of the independent variables
and the outcome, these discrepancies are known as biases. Identification is being able
to express the correct causal path.

1 Conditioning can induce or remove biases from the causal graphs. ⇒ V and D
could be hindered by conditioning

2 Lack of standard methodology to tackle identification or bias issues on our graphs.
⇒ C is greatly hindered if results are biased.

40



DAG identification basics

Figure: Three basic relationships in DAG
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Bad controls

• Selection Bias classic example (Van der Weele, 2014): if this path is negative,
the association between S and Y given L = 1 could become negative even if the
direct causal effect is positive

Figure: S is maternal smoking, L is low birth-weight, U is malnutrition, and Y is neonatal
mortality.
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Good control
Total Sulfur Dioxide ≥ 130 ∧ ≤ 172 and Sulphates ≥ 0.5 ∧ ≤ 1.1

Figure: Four Condition Causal Graphs
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Recommendations

• Implementation of identification

• Model supplementation

• Programming package implementation

• Bootstrapping
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Thank you!

Thank you for your time and we look
forward to answering your questions.
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Appendices
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Hierarchical metrics

Figure: Relationships between hierarchical metrics
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Hierarchical metrics

• A is the adjacency matrix

• G = (V ,E ) is a graph with vertices v ∈ V and edges (i , j) ∈ E with associated
weights wij

• So (G ) is the set of all source vertices; Sk (G ) is the set of all sink vertices

Table: Relevant definitions for hierarchical structures

weighted in-degree weighted out-degree

di =
∑

j wij for vertex i δi =
∑

j wij for vertex i

d = (d1, d2, . . . , dn) is vector δ = (δ1, δ2, . . . , δn) is vector
L = diag (d)− A is Laplacian Λ = diag (δ)− A is Laplacian
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Hierarchical metrics - microscopic

Hierarchical levels
Hierarchical levels (HL) grades vertices based on how far they are from sources
V ∈ So (G ) or sinks V ∈ Sk (G )

Forward: g := argminx∈T ∥x∥2, where T = argminx∈Rn

∥∥LT x − d
∥∥
2

Backward: γ := argminx∈S ∥x∥2, where S = argminx∈Rn

∥∥ΛT x − δ
∥∥
2

Difference: h = 1
2 (g − γ)

HL vector follows from the minimum Euclidean norm ∥x∥ under the constraint that x
minimizes

∥∥LT x − D
∥∥
2
or

∥∥ΛT x − δ
∥∥
2
.
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Hierarchical metrics - mesoscopic

Hierarchical differences
Hierarchical differences (HD) assign grades to edges via differences in HL.

Forward: FHDij (G ) = {gj − gi}
Backward: BHDij (G ) = {γi − γj}

HD evaluates the difference in HL between connected vertices, indicating directionality
and magnitude of influence by directly comparing the HL of two connected vertices.
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Hierarchical metrics - microscopic

Influence centrality

Influence centrality (IC) measures the extent to which a vertex is an influencer of the
graph by characterizing how significant the vertex is.

Forward: ηf (G , j) = 1−mean (FHD (G , j)) = 1−
∑

i :(i,j)∈E wij ·FHDij (G ,j)∑
i :(i,j)∈E wij

Backward: ηb(G , j) = 1−mean (BHD (G , j)) = 1−
∑

i :(i,j)∈E wij ·BHDij (G ,j)∑
i :(i,j)∈E wij

IC determines the degree to which a vertex acts as a source of influence (forward
centrality) or resists influence (backward centrality) by checking each vertex’s HL
relative to those of its neighbors by measuring the weighted average of HD for a given
vertex.
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Hierarchical metrics - microscopic

A positive ηf (G , j) indicates that j is an influencer, with HL higher than those from
which it receives influence; a positive ηb (G , j) indicates that j is resistant to influence,
with HL lower than those it influences.
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Hierarchical metrics - macroscopic

Democracy coefficient

Democracy coefficient (DC) measures the extent to which influencers are being
influenced, and checks for relative “democractic” and “autocratic” behavior.

Forward: ηf (G ) = 1−mean (FHD (G )) = 1−
∑

(i,j)∈E wij ·FHDij (G)∑
(i,j)∈E wij

Backward: ηb(G ) = 1−mean (BHD (G )) = 1−
∑

(i,j)∈E wij ·BHDij (G)∑
(i,j)∈E wij

DC checks for equitability and uniformity of influence and control distribution among
vertices by comparing their average HD across all edges to a baseline of zero.
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Hierarchical metrics - macroscopic

If η (G ) → +1, then G is more “democractic”, in that there is a more equitable
distribution of influence (more variables have a say); if η (G ) → 0, then G is more
“autocratic”, in that there is a less equitable distribution of influence (fewer variables
have a say).
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Hierarchical metrics - macroscopic

Hierarchical incoherence
Hierarchical incoherence (HI) measures how neatly the graph structure is partitioned
into levels.

Forward: ρf (G ) = [var (FHD (G ))]
1
2 =

[∑
(i,j)∈E wij ·(FHDij (G)−mean (FHD (G))2)∑

(i,j)∈E wij

] 1
2

Backward: ρf (G ) = [var (FHD (G ))]
1
2 =

[∑
(i,j)∈E wij ·(BHDij (G)−mean (BHD (G))2)∑

(i,j)∈E wij

] 1
2

HI checks for variability or inconsistency in HD across G by evaluating the spread or
dispersion of HD from their mean value, indicating the extent of consistency of
influence or control among nodes.
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Hierarchical metrics - macroscopic

If ρ (G ) → +∞, then G is more “incoherent”, in that there are more disparities in
hierarchical levels, and less uniform and equitable distribution of influence; if
ρ (G ) → 0, then G is more “coherent”, in that there are more uniform structure and
minimal differences in hierarchical levels.
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Statistical validity

Table: Correlation coefficients with model fit evaluations

CFI GFI AGFI NFI TLI RMSEA AIC BIC LogLik

CFI 1.00 1.00 1.00 1.00 1.00 -0.66 0.64 0.47 -0.64
GFI 1.00 1.00 1.00 1.00 1.00 -0.66 0.64 0.47 -0.64
AGFI 1.00 1.00 1.00 1.00 1.00 -0.66 0.64 0.47 -0.64
NFI 1.00 1.00 1.00 1.00 1.00 -0.66 0.64 0.47 -0.64
TLI 1.00 1.00 1.00 1.00 1.00 -0.66 0.64 0.47 -0.64
RMSEA -0.66 -0.66 -0.66 -0.66 -0.66 1.00 -0.96 -0.71 0.97
AIC 0.64 0.64 0.64 0.64 0.64 -0.96 1.00 0.81 -0.99
BIC 0.47 0.47 0.47 0.47 0.47 -0.71 0.81 1.00 -0.76
LogLik -0.64 -0.64 -0.64 -0.64 -0.64 0.97 -0.99 -0.76 1.00
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The user

• Domain experts

• Users affected by model decisions

• Scientists/developers

• Managers/executive board

• Regulatory entities/agencies
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The user

Definition (Agency model)

An agency model is a quadruple of the form:

Magency = ⟨M, a, p, i⟩

where M is the model being implemented or designed, a is an agent using or
implementing a model M, p is the patient or audience with or for whom the agent is
working and/or presenting, and i is the instrument to use or access the underlying
model M.
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The user

Figure: Agency model representation
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Accessibility

1 Perceivable - Information must be available to users in ways they can perceive
with their senses, using assistive technologies as necessary

2 Operable - Components must work with both keyboards and assistive devices

3 Understandable - Content needs to be clear and limit ambiguity

4 Robust - Documents must maximize compatibility with both current and future
technologies like screen readers
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Accessibility

Definition (Inclusive design)

Inclusive design is a design methodology that enables and draws on the full range of
human diversity.

Definition (Accessibility)

Accessibility refers to the qualities that make an experience open to all; it is a
professional discipline aimed at achieving an experience open to all.
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Accessibility

Definition (Permanent disability)

Permanent disabilities are conditions that persist over time and significantly impact
how individuals interact with (digital) content.

Definition (Temporary disability)

Temporary disabilities are impairments that arise from injuries and illnesses that
affect users’ otherwise abled abilities for a certain period of time.

Definition (Situational disability)

Situational disabilities are barriers or impedances that arise due to environmental or
situational factors that affect users’ otherwise abled abilities for a certain period of
time.
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Accessibility

• Contrast ratios for foreground and background elements

• Full navigation by a keyboard alone, integrated with assistive technologies (AT)

• Captions and tagged elements for multimedia and machine readability

• Functionality that uses multipoint or path-based gestures can be operated with a
single pointer
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Bad controls
• Bias amplification

Figure: Controlling for Z will fail to deconfound the effect of X on Y

• Over-control bias

Figure: Controlling for Z will block the effect we want to estimate.
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Good controls

• Blocking Backdoor path

Figure: Z is a common cause of X and Y, blocking the backdoor path gives an unbiased
estimate
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Good controls

• Blocking Backdoor path of a mediator

Figure: Common causes of X and a mediator also confound the effect of X on Y.
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Prior knowledge

Figure: LiNGAM allows the user to set known
relations prior to causal discovery (LiNGAM
Documentation 1.9.0., July 2024).

Figure: x0, x1, and x4 have been set as sink
variables.
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Prior knowledge

Figure: Prior knowledge is set in the interface
via dropdown selections, based on the user’s
primary or secondary knowledge.

Figure: Relations can be exported to a .csv file
for input into the CCD platform.
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Future directions (interface)

• Complete What-If Analysis to test model sensitivity

• Enable full functionality for all condition combinations up to k=4

• Allow for analysis of bootstrapping for each model

• Integrate WL engine

• Investigate correlation between score and average rank for each feature

• Add menus (zoom, pan, etc.) and keyboard controls to increase accessibility in
model explorer and model builder sections

• Add documentation, README, and tooltips throughout

• Integrate a Q & A bot or discovery assistant to guide the analysis

• Automatically apply suggestion to data and allow user to save results for
comparison (e.g., effects if highly correlated variables are removed?)

• Incorporate new ordering or recommendation algorithms
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