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1 Physical background

Ocean HF radar works by emitting radio waves of different frequencies. The radar then
receives radio waves that are reflected back by the ocean’s surface. The signal of these
reflected waves is then changed to a frequency domain equation using a Fourier transform
so that the Doppler spectrum of the reflected radio waves can be analyzed. The signals that
the radar receives back from the ocean are determined by Bragg scattering. Bragg resonance
occurs when radio waves that are reflected by consecutive ocean wave peaks are in phase
with one another and have maximum constructive interference. This requires the distance
between the ocean wave peaks to be half of the radio wavelength. These reflected radio waves
are said to be Bragg scattered.

First-order Bragg scattering occurs when an ocean wave moving directly towards or away
from the radar has a wavelength that is half the radio wavelength. We can represent both
ocean waves and radio waves using wavevectors. The magnitude of each wavevector is the
wavenumber of the wave, and the direction is the direction of the physical wave. If kg is a
wavevector representing the radio wave and kg is an ocean wave moving directly towards or
away from the radar, then first order Bragg scattering requires that

kyq = +2ko. (1.1)

Second-order Bragg scattering involves multiple ocean waves moving in different direc-
tions. It arises from both electromagnetic and hydrodynamic effects. In the case of electro-
dynamics effects, the second-order Bragg scattering is a result of a radio wave bouncing off
first one ocean wave and then another in such a way that Bragg resonance occurs. Let k;
represent the first wave and kg the second wave. In this situation, Bragg resonance occurs
when

ki + ko = —2k,. (1.2)

In the case of hydrodynamic effects, the second-order Bragg scattering occurs when the wave
reflects off the intersection of two ocean waves. As long as the two intersecting ocean waves
fulfill (1.2), Bragg resonance will occur and result in second-order Bragg scattering.

1.1 Relationship between Doppler spectrum and ocean wave spectra

Let o(w) be the Doppler spectrum of Bragg scattering, where w is the Doppler frequency in
radians per second (w = 27 f). If oy is the Doppler spectrum of first-order Bragg scattering
and oy is the Doppler spectrum of second-order Bragg scattering, then

o(w) = o)+ 0@ (1.3)

There exist theoretical equations describing the relationship between the ocean waves’
spectra and the Doppler spectra of first and second-order Bragg scattering. Our research
focuses on retrieving the wave spectrum, S(k) of an ocean wave, k, from the theoretical
equation relating S(k) to o(9) given below.
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0'(2)(&)) = 2671']{}3 Z Z //]R2 |T(m1k1,m2k2)2|5(m1k1)5(m2k2)
mi1==x1meo==%1
X0 <w —my\/ gk1 — mQ\/gI@) dp dgq.

(1.4)
Here, I' is the coupling coefficient described below, kg = |ko| = 27” where A is the distance

between ocean wave peaks, and delta is the Dirac delta function. The wave vectors k; and
k, are parameterized by p and q as follows:

ko = (ko,0), k1 = (p — ko,q), k2 = (=p — ko, —q). (1.5)
The coupling coefficient, I'(miky, moks), is calculated by
F(mlkl, m2k2) = FE<k]_, kz) -+ FH<m1k]_, m2k2) (16)

where

_ 1(kiko)(kako)/kj — 2(kiks)
Prllake) =5 Ukt — ko) D
(k1ky — kika)(w? + w%))

myimav/KkiKkae(w? — w%)

with A being the average normalized impedance of the seawater.

7
Ly (miky, moka) = ) (kl + ko —

1.2 Radar Range

The area of the sea’s surface that the radar reflects off of is broken up into a grid. The
signals received back by the radar are measured for each grid section, where the sections
are separated by direction and range, as shown in Figure 1. The width of the direction and
range separations is determined by the radar’s azimuth and range resolutions, which in this
project are approximately 15 deg and 1500 m. The total range is about 120 deg, and the
total azimuth is about 50 km.

~ \
,\500@7 o %) ded
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™~
Not to scale

Figure 1: Radar Range Direction
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2 Mathematical Background

2.1 Tikhonov Regularization

Tikhonov regularization is a technique used to solve ill-posed inverse problems of the form

where F': X — Y is a continuous operator between Hilbert spaces X and Y. The strategy
is to consider

L(z) = |[F'(x) = ol (2.2)

and find the z which minimizes this function. For ill-conditioned F, xy = argmin L(z),

x
may not accurately approximate the true solution [10]. In such cases, we introduce the
regularization term A||x|| for some regularization parameter A > 0

L(z) = [ F'(x) = yoll + Allz[]. (2.3)

The regularization term controls the fitting of the solution to data. Small values of A provide
a weak constraint to the error function and, therefore, may result in an overfitted solution.
An overfitted solution matches the data points very accurately, but may not provide a good
approximation of the true solution. Larger values of A will overregularize the solution result-
ing in underfitting. For finite-dimensional linear operators A, we can choose a regularization
parameter to satisfy

Az — yol = Tlle] (2.4)
where
zy=|(A"A+ )\21)*1||A*y0 (2.5)

7 is a tolerance and e is the error due to noise [10]. Therefore, if we have a good estimate
for the expected amount of noise ||e||, then it is relatively easy to find a good regularization
parameter to use. However, for infinite dimensional non-linear problems, choosing the right
parameter can be a much more difficult task. As such, we will need to rely on experimental
methods to determine what regularization parameter to use.

2.2 Gradient Descent

Gradient descent is an iterative method used for optimizing differentiable functions. Gra-
dient descent algorithms can be used to locate the minima of finite dimensional cost functions
of the form f : R™ — R. The first step in the gradient descent algorithm is to pick an initial
guess, . Next, calculate the gradient of f at xy. The vector —V f(zg) then gives us the
direction of the steepest descent of our cost function. After calculating the gradient, we set

1 = x9 — aV f(xg) (2.6)
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for a chosen step size a. For sufficiently small o, we have f(x1) < f(xo). We then iterate
this process by setting

Tpi1 = Tp — aV f(z,). (2.7)

For small enough values of «, we will have a monotone decreasing sequence. Then if we
assume our cost function is bounded below, then the monotone converge theorem ensures

the existence of a minimum y* = min f(z,). However, in general, the existence of lim =z, is
n—o0 n—o0

not guaranteed.

In order for lim z, to converge to a minimizer, we need to have a starting guess that is
n—oo

already sufficiently close to a minimizer. This can be difficult if there is little information
about the behavior of the cost function f. One way to ensure convergence of the gradient
descent method to a global minimizer is to prove the strict convexity of the cost function. If
a function is not convex, we could attempt to locate the global minimizer of the cost function
by running the gradient descent algorithm for many different starting points. This may be
useful for determining more general properties of the cost function, such as the locations
of many different minimizers and what the basins of attraction are for different minima.
However, running the gradient descent algorithm for many different starting points may take
too long to compute.

2.3 Dynamic Step Size

When using the gradient descent method, dynamic step sizes can be useful for reducing
the number of iterations and also for finding global minima. Small step sizes will give more
accurate trajectories toward the minimizer of the cost function. However, if the step sizes
are too small, then the algorithm will take too many iterations to converge. Larger step sizes
may not converge to a minimizer even with a good initial guess because the gradient only
provides local information about the cost function.

When using a dynamic step size, we modify equation 2.7 by

Tonr1 = T — a, Vf(x,). (2.8)

Here we see that the step size a, can now change as the descent algorithm runs. In order
for the gradient descent method to converge quickly, we want to have large step sizes when
||z, — 2*|| is large and small step sizes when ||z, — z*|| is small. For the first case, the larger
step sizes cause the values of x, to quickly move through the domain of f, which allows us
to quickly find a point that is relatively close to a minimum. As we get closer to a minimum,
we then use smaller steps to hone in on a precise value for the minimizer. One problem with
using dynamic steps is determining the optimal step size. You cannot simply calculate the
value of ||z,, — z*|| as described because that would require us to know what the minimizer
is, to begin with. If you have some knowledge about what the minimum of the cost function
is, as is the case for some least squares problems, then you can adjust the step size according
to || f(xn) — f(«*)|. For many problems, though, we do not know the expected minimum. In
this situation, we need a different method for determining the step size.

There are a few things to consider when attempting to determine what step size to use.
First, we will note that a sufficiently large step size from z,, may result in f(z,11) > f(z,)

5
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f(x)

Figure 2: Gradient descent algorithm with insufficient decrease. Reprinted from [8].

This is a situation we definitely want to avoid since we cannot locate the minimum of f if the
values of f(x,) are not monotonically decreasing. Therefore, the simplest restriction that we
can introduce is

f(@ni1) < f(n). (2.9)

This condition, however, is not sufficient to ensure quick convergence, as can be seen in
figure 2. We can remedy this by introducing another term that requires the next estimate to
decrease by a certain amount

f(@nt1) < f(wn) — cron||V f ()] (2.10)

for some constant ¢; € (0,1). This is referred to as the Armijo condition. The Armijo
constant c; is a tuning parameter that indicates how strict of a decrease we are demanding
for our function. The Armijo condition is depicted in figure 3. Values of ¢; closer to 0 are less
strict. In figure 3, this corresponds to [(«) having a smaller slope which would increase the
size of the acceptable regions. A value of ¢; = 0 would correspond to [(a) being a horizontal
line and gives us the condition in equation 2.9. We exclude 0 from the possible values of the
Armijo condition because we want to improve upon the condition in equation 2.9. Values
of ¢; that are closer to 1 require a more strict decrease. A value of ¢; = 1 corresponds to
[(«) being the tangent line. We exclude this value because there might not be any values of
f(x) in the direction of the gradient that is below the tangent line, as is the case in figure 3.
For values of ¢; € (0,1), we get a secant line I(a) with a slope greater than the tangent line.
There are guaranteed to be values of f(z) on this line in the direction of the gradient that
lies below the line. One issue with choosing a strict Armijo constant is that the upper bound
line [(«) may be so steep that the acceptable region only exists close to the initial guess. This
is undesirable as it results in a very short step size giving little improvement and requiring
more iterations. We, therefore, need to carefully choose our step size in order to accomplish a
faster computation. As with the regularization parameter, we rely on experimental methods
to determine what parameter to choose.

In addition to the Armijo condition, we can add more conditions to restrict the acceptable
region for the step size. We would like for the next step in the iteration to be closer to a
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0(0) =fx +ap,)

R (]

acceptable | acceptable |
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Figure 3: Example of Armijo Condition. Reprinted from [8].
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Figure 4: Example of Wolfe Condition. Reprinted from 8]

minimum than the current step. Without a good understanding of the cost function, it is
difficult to know if you are getting closer or further from a minimum. However, we do know
that any minimum will have a gradient of 0 and, therefore, a directional derivative of 0
in every direction. Thus, we would like the next iteration to have a less steep directional
derivative than the current directional derivative in the direction of V f(z,)

[(Vf(2ns1), V(@) < [(VF(2a), Vf(zn))] (2.11)

As with the Armijo rule, this restriction is useful, but we can introduce a parameter ¢y to
demand further improvement. This gives us our second condition

[(VF(@n1), V()| < (V[ (n), VI (20))] (2.12)

for some constant ¢y € (c1,1). This is referred to as the strong Wolfe condition. The constant
¢y determines how shallow of a slope we demand. Values of ¢y that are close to 1 will more
closely approximate condition 2.11 and are therefore less restrictive. Values closer to ¢; will
cause the desired slope to be flatter, which provides a stricter improvement demand.

One important concern when adding these restrictions to the possible step size is whether
there exist step sizes that can actually satisfy both these conditions simultaneously. We will
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prove that such a step length will always exist. However, we will first add the assumption
that f(z) be bounded below [8].

Proof. First, we will try to find a range of values such that the Armijo condition is satisfied.
Let ¢(a) = f(zn, — aVf(z,)) and (o) = f(z,) — ca{V f(z,), Vf(x,)). First note that
#(0) = 1(0). Furthermore, note that

—c|l f(@n)l| > =f(zn)]] (2.13)
I(0) > ¢ (a). (2.14)

In particular, there exists some a; > 0 such that I(a1) > ¢(aq). However, we note that
f(z) is bounded below, so ¢(«) is bounded below, but [(«) is not. Therefore, there exists
some ay > «j such that [(az) < ¢(az). Thus, by the mean value theorem, there exists an
o € (a1, ag) such that [(o') = ¢(a’). Then we let o/ = min{a : I(«) = ¢(«)}. For a € (0, ),
the Armijo condition is satisfied.

Then for the Wolfe condition, we use the mean value theorem to show that there exists
an o/’ € (0,a’) such that

¢(a') = ¢(0) = o'¢f(a”)
') = f(zn) = =V f(zn — "V [(20)), Vf(2n))
) == (Vf(zn = "V [(z)), V(2n))
|

- <vf(xn) ( n) )
)=V (@, — "V (2,)), V(). (2.15)

1V f(an), Vf(zn))| = |
Furthermore, we note that c; > ¢y, so

[V f(zn), VI(za))| > KV (2, — "V f(2a)), Vf2a)) (2.16)
Therefore, the strong Wolfe condition is satisfied. O

2.4 Riesz Representation

Until this point, we have only discussed the mathematical theory for a finite-dimensional
setting. However, our problem requires us to apply the gradient descent method to an infinite
dimensional cost function. Thus we need to define what the gradient is for a cost function from
an infinite dimensional domain. First, we will introduce the concept of the Fréchet derivative.
The Fréchet derivative generalizes the concept of a derivative to functions between normed
vector spaces. Consider a function f : V — W between normed vector spaces. We say f is
Fréchet differentiable if there exists a bounded linear operator Df : V' — W such that

i 1@+ B) = f(@) = DI

|[llv—0 IE21R%

=0. (2.17)

We call D f, the Fréchet derivative of f. Now we introduce the Riesz representation theorem.

Riesz Representation Theorem 1. Given a Hilbert space, X, and T € L(X,R), vy € X
such that for all h € X
T(v) = (vr, h) (2.18)

and
llorllx = IT]|oxm)- (2.19)

8
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Applying the Reisz representation theorem to the Fréchet derivative of f at x gives us a
v,,, () such that

Df(z)[h] = vy, (), h). (2.20)
This parallels the equation for a finite-dimensional directional derivative given by
Dy f(x) = (Vf(z),u). (2.21)

Therefore, for a differentiable function f between normed vector spaces, we define the gradient
of f to be the Reisz representation of the derivative

Vi) =vy,,(x). (2.22)

Using this definition allows us to apply the gradient descent algorithm to any function
defined on a normed vector space. In addition, we can use this definition to apply the Armijo
and Wolfe conditions to our problem.

3 Methods

3.1 Defining the Cost Function for the Tikhonov Regularization Problem

The problem of determining the wave spectrum S(k) from a known Doppler spectrum

0(2)(w) can be expressed as a Tikhonov regularization problem. First, we define the non-
linear operator A : L(R?,R) — L(R,R) as

A(S) =257kg Y Y / / T (maky, maks)?|S(miky ) S (maks)
mi1=+x1mo==%1 R?
X (w — myr/gks — ma/gks) dpdq.  (3.1)

The right-hand side is identical to the right-hand side of equation 1.4, but A(S) is a function
of the wave spectrum rather than a function of the Doppler frequency. From this operator,
we define a cost function, L : L(R* R) — R?

L(S) = 1A(S) = o2 (W)l |2y + IS L2e2) (3-2)

where X is our regularization parameter. Our goal is to minimize this cost function using a
gradient descent algorithm to determine the wave spectrum.

3.2 Calculating the Gradient of the Cost Function

We need to determine an expression for the gradient of the cost function, but first, we
will show that A(S) is Fréchet differentiable.
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Proof.

A(S +h) =27ks > Y / /IR T (maky, moks)?|[S(miky) 4+ h(miky )]

mi==x1mo==+1

X [S(maks) + h(maks)]d(w — miy/gks — mar/gks) dp dg (3.3)
:2671']{'3 Z Z //R2 ]F(mlkl, m2k2)2] [S(mlkl)S(mzkg) + S(m1k1>h(m2k2)

mi1==x1mo==%1

X S(maks)h(miky) + h(miky ) h(maks)|6(w — mi\/gks — ma/gks) dpdg (3.4)
)+ 2nk 3 S [ ik male)?) | S homel)

mi1=x1meo==%1
+ S(kag)h(mlkl)} d(w — my/gkis — mar/gks) dpdq + o(h). (3.5)

Therefore, the Fréchet derivative of A is given by
A'(S)[h] =2°mk; Z Z //2 T (miky, moks)?| [S(mlkl)h(m2k2)
mi=+1my=+1" /R

+ S(m2k2)h(m1k1)} d(w — my/ gk — mar/gks) dpdg. (3.6)

We can then use this to express the Fréchet derivative of our cost function
L/(S) [h] = 2<A(S) - O'Q((U), A,<S) [hDL?(R) + 2/\(5, h>L2(]R{2)- (37)

Now we need to determine the Riesz representation of the derivative of the cost function.
The Riesz representation of L'(.9) is a function vg € L*(R?) such that

L'(S)[h] = //RQ vs(p, @)h(p, q)dpdg. (3.8)

One way for us to calculate vg is to rewrite the integral for L'(S)[h] in a way that allows
us to factor out the h. In order to do this, we need to make sure that each instance of A in
equation 3.6 has the same argument. This can be accomplished by splitting up A’(.S) into 8
terms, each of which takes the form

2°mkq Z Z / D (maky, moks)?| {S<miki)h(mjkj):| 6(w —man/ gkt — may/gks) dp dq,
mi==x1 mo==%1 R2

(3.9)

i,j € {1,2}, j # 1. In order to factor out h from each term, we want to perform substitutions
so that the arguments of h in each term are identical. For each term, we make the substitution
(mjk;) = (z,y). When j=1, this substitution gives us x = my(—p — ko) and y = —myq, then
solve for p and q to get p = mil + ko and ¢ = —m%. When j=2, this substitution gives us

10
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x = —may(p — ko) and y = —m;q, then solve for p and q to get p = — ko and ¢ = —m%.
We then substitute these values as the p and q parameters of k;. As an example, we will look
at the term where ¢ = 1, j = 2, and m; = m; = 1. In this case, we make the substitution
xr = —p—ko and y = —q, then solve for p and q to get p = —x — kg and ¢ = —y. Substituting
these values in as the parameters for k; gives us:

[ Jr(¢=2 - 200000

X 4 (w — Val(z + 2ko)? + 77 — \/g[2® + y2]i) dxdy. (3.11)

2
267Tk4

[5((—x — 2k, —y)h(z, y)] (3.10)

mi==21 mo==%1

The remaining terms can be calculated with similar substitutions. Grouping results,
factoring out the h(z,y), and adding the normalization term gives us

vs(x,y) = /OO 4(A(S) — o) (w Z Z

o0 mi==41 mo==42

2

<_— T + 2moko), y), (%?J))

1
1

2
X6 [ w—mi1\/g [(—$+2k0) + 92 —mg\/ﬁ[x2+y2]% S(—%(m+2m2ko,y))dw
2

+2MS. (3.12)
We can now define
VL(S) =vs(z,y). (3.13)
Thus, we can use this to define our gradient descent recursion as
Spi1 = Sp — auug,,. (3.14)

The expression for the gradient of L also allows us to rewrite the Armijo condition as

L(Sn—l—l) S L(Sn) - CloanUSn L2(R2)- (315)
Similarly, we can rewrite the Wolfe condition as
(V8,415 V80 ) 22| < C2|(Vs,Vs)|L2(R2)- (3.16)

4 Applying the Gradient Descent Algorithm

4.1 Numerical Technique

We suppose that we are given a second-order Doppler spectrum o) (w) with the aim of
finding the wave spectra S(k) that produced it. First, we interpolate the data of o) (w)
to get a function to R. The radar provides data for w € [—4.61167,4.61167]. We then
choose an initial wave spectrum Sy to begin the gradient descent algorithm. A partition of
the pg-plane is chosen to numerically calculate the integral of A(Sp). The current version of

11
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our code breaks the relevant segment of the pg-plane into a 30 x 30 grid. We note that the
double integral in equation 3.1 includes a delta function. This delta function defines a curve
of integration, but the argument of the delta function is too complicated to find an explicit
parameterization. Therefore, we approximate the delta function as

5(z) ~ {2_ if faf < (4.1)

0 otherwise

Once an approximation for A(Sp) is calculated, the Reisz representation is numerically cal-
culated using the approximation for §(z) again. Lastly, the original function Sy is adjusted
according to equation 3.14.

4.2 Tuning The Algorithm

There are a couple of challenges that we need to address when using the Gradient descent
algorithm. The first is that the behavior of L(S) is difficult to predict. Therefore, we are
unable to determine if the solution we get from the gradient descent algorithm is the actual
solution or if there is another wave spectrum that produces the same minimum. One way
to fix this would be to figure out how to determine a good starting guess for the gradient
descent algorithm. However, this requires more information about the characteristics that
could affect the wave spectra.

Additionally, we know that L(.S) is bounded below 0, but we have no information about
how small the minimum value of L(S) is expected to be. Therefore, it is unknown if we are
close to a minimum or not at any step in the iteration. This makes it difficult to determine
when to stop the algorithm. One way to determine a stopping point would be to check for
the rate of improvement and stop once the improvement slows to a chosen amount.

Our main method for determining what parameters to use for the gradient descent algo-
rithm will be to train the algorithm on Doppler spectra created from known wave spectra.
When constructing the wave Doppler spectra, we want to use functions that closely model
real wave spectra. We use the model from Kataoka [6]. First, we describe the wave spectra
as a function of frequency and direction:

S(k) = S¢(HGE]f) (4.2)
where Sy is the frequency spectra and G is the wave spectra distribution. The frequency
spectra are given by

Sp(f) = 0.25THT(T, f) ™" exp [—1.03(T, f) "] (4.3)

where Hj is the height of the significant wave and T} is the period of the significant wave.
The wave spectra distribution is given by

2

where G is a normalization constant and s is the wave index. The wave index is given by

Y

- Smax (f_) 1 < P
5(f) = ; 25

Smax (E) if f > fp

G(0|f) = Ggcos®) (ﬂ) (4.4)

(4.5)

12
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where Syay is a parameter and f), is the peak wave frequency. Since G(6|f) is a distribution,
we require that

/ "GO f)do =1 (4.6)

—T

Therefore,

ﬂ B -1
Gy = [/ cosZ) (%) dﬁ] . (4.7)

An example of a wave spectrum constructed from this model is shown in figure 5. The figure
indicates a dominant wave traveling with a frequency of f = TL = 0.33 in the direction

of #p = 0.5. The mass of the wave spectra is concentrated near (Ti, 90> and continuously

0.2475
0.2200
- 0.1925

0.1650

decreases to 0 at further points.

Model Wave Spectra

01375

01100

Direction (rad)
o

I 0.0825

0.0550
0.0275
0.0000

02 04 06 08 10
Frequency (Hz)

Figure 5: Model wave spectrum for Hy = 1, Ty = 3, smax = 10, f, = 0.317, 6y = 0.5 in the
frequency-direction plane.

The wave spectrum is constructed in the f@-plane with f € [1072,1] and angle values of
0 € [—m,7]. The spectra is then converted to the pg-plane with the relations

0 = arctan (E) (4.8)
q

1
f=g-va* +a)"" (4.9)

0
The model wave spectrum is then used to construct a second-order Doppler Wave spec-
trum as described in section 4.1. The second-order Doppler spectrum resulting from the
wave spectrum in figure 5 is depicted in figure 7. For this computation, ¢ = 0.01 was used
for the delta function approximation. One important thing to note is that for a frequency

w = /2gky, there is only first-order Bragg scattering, so we expect an absolute power of 0 at
these values.

13
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Model Wave Spectrum

4 02475 Constructed Second Order Doppler Spectrum
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Figure 6: Model wave spectrum for H, = Figure 7: Second order Doppler spectrum
1, Ty = 3, Smax = 10, f, = 0.317, 60y = 0.5 constructed from the model wave spec-
in the pg-plane. trum in figure 5.

4.3 Numerical simulation

We solved the direct problem by using the wave spectrum with H; = 1, T = 3, spax = 10,
fp = 0.317, 6, = 0, and constructing o,. These are the contour lines of the sample wave
spectrum (figure 8) and constructed oy (figure 9).

Ts=3 from S to sigmmaz2

0.1026 0.08 4
0.0912
0.0798 0.06 4

0.0684

0.0570

Absolute Power

s 0 0.04
0.0456
27 0.0342
0.02 4
0.0228
L]
0.0114
0.00
-6 T T T T T 0.0000 T T T T T T T
-6 -4 -2 0 2 4 6 =15 -10 =5 0 5 10 15
p Frequency
Figure 8: The model of wave spectrum Figure 9: Second-order Doppler spectrum
with parameters Hy, = 1, T, = 3, Spmax = constructed from the model wave spec-
10, f, = 0.317, 6, = 0. trum in the figure.

By using constructed oy, we tried to reconstruct the initial value. The algorithm is as
below.

1. Set initial Sy, n = 0.
2. Using the Riesz representation formula, find the steepest gradient, VL(S).

3. From the formula, S, 1 = S,, — «VL(S), generate next S value.

14
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4. Iterate the process from 2 to 3 until convergence.

By setting the initial condition to get o5 as Sy, the result of the numerical simulation is in
Figure 10. The parameters are step size = 1, iteration number = 30, regularization term =
10~*, and calculation time is about 54 sec. This is the almost same as the initial condition.

=3 Ts=3

6 6
0.1026 0.1026
44 0.0912 44 0.0912
0.0798 0.0798

24 24

0.0684 0.0684
o 0 0.0570 - 0 0.0570
0.0456 0.0456
21 0.0342 -2 0.0342
0.0228 0.0228

-4 )
0.0114 0.0114
—6 T T T T T 0.0000 —6 T T T T T 0.0000

—6 —4 -2 [} 2 a4 6 —6 —4 =2 o 2 4 6
P P
Figure 10: The same figure 8 Figure 11: Reconstruction.

Next, we add perturbation to the initial data. Let € be the amplitude of perturbation.
When e = 0.001, the initial condition is figure 11.

Ts=3
6
0.0990
0.1026
a 0.0882
0.0912
0.0774
0.0798 2l
0.0666
0.0684
- o 0.0558
0.0570
0.0450
0.0456
27 0.0342
0.0342
0.0234
0.0228 —4
0.0126
00114
-6 . . T T . 0.0018
0.0000 -6 —4 -2 0 2 4 6

Figure 13: Reconstruction when e =
0.001.

Figure 12: € = 0.001

We tried to reconstruct the initial condition (figure 8) from this and changed the iteration
number = 200. The calculation time is about 267 sec, and we change the value less than
0.002 to 0 (figure 12).

When e = 0.003, the initial condition is figure 14, and we reconstructed from this with
the same parameters of € = 0.003. The calculation time is 263 sec, and the result is figure 15
with changing the value from less than 0 to 0.
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Ts=3
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Figure 15: Reconstruction when e =

Figure 14: € = 0.003 0.003.

From these results, we can almost reconstruct the initial condition with regularization
terms and changing minimum values. However, it is difficult to determine what parameters
to use to reconstruct the initial conditions. In the future, we need to find out a good way to
set the parameters and a stronger system to reconstruct the wave spectrum without changing
minimum values.

5 Further Research

5.1 Improving the Gradient Descent Algorithm with Backtracking

The main improvement that we would like to add to the gradient descent algorithm is
the Armijo and Wolfe conditions mentioned in section 2.3. These conditions would hope-
fully increase the rate of convergence of the algorithm. In addition to improving convergence
speed, the Armijo and Wolfe conditions would also improve the ability of the gradient de-
scent, algorithm to avoid local minima and locate a global minimum. In order to implement
these conditions, we would use a backtracking line search algorithm. The step size for a
backtracking line search at the n'" step in the gradient descent is defined by

o, = MpB™" (5.1)

where M > 0 and 5 € (0,1) are constants, and m, is the first non-negative integer such
that both the Armijo and Wolfe conditions are satisfied. The backtracking algorithm iterates
through test step sizes

a=Mpg™ (5.2)

over m until the conditions are met, and then the n'" step size for the gradient descent is
defined accordingly. One issue with this algorithm is that for poorly chosen M and (3, the
Armijo and Wolfe conditions may never be satisfied for the tested step sizes. In section 2.3,
we proved the existence of a step size that satisfies both conditions. However, this does not
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guarantee that the backtracking line search will find such a value. The backtracking algorithm
tests for the conditions at discrete values defined by equation 5.2. When moving from one
test step to the next, some information about the cost function is ignored. Referring back to
figure 4, we can see that the acceptable regions are positive intervals on the real axis that do
not contain 0 as an endpoint. This is an issue because it is possible for a backtracking search
to skip over these acceptable regions, and if the test step ends up between 0 and the infimum
of the acceptable regions, then the algorithm will be stuck in an infinite loop. In addition to
skipping over acceptable regions, poorly chosen backtracking parameters may also result in
the test steps skipping over a global minimum, which could lead to an inaccurate result. In
order to gain more information about the line search, we need to use a larger backtracking
parameter 3. This will give a better chance of finding a value in an acceptable region, but it
may result in unnecessary calculations if the test step is far from an acceptable region.

The backtracking algorithm requires us to choose two parameters: the max possible step
M and the backtracking parameter 3. The magnitude ||S||.2(r2) depends on the significant
wave height and frequency. Therefore, if reasonable bounds can be obtained for either of
these values, the Kataoka model [6] could be integrated for these extreme values to obtain a
bound S for [|S]|2(r2y. Then for two arbitrary wave spectra S; and S,

HSl - SQ”LQ(RQ) S H51HL2(R2) + HSZHLQ(RQ) S QS (53)

If bounds for the wave height and frequency cannot be obtained, the max step size could be
determined experimentally. The backtracking parameter is much more difficult to determine
because of the unpredictable behavior of the cost function 3.2. One strategy for deciding
the backtracking constant would be to start with large values of 3, which give the most
information about the cost function. Since a large value of 5 would result in the backtracking
algorithm scanning the cost function for detail, these values would be expected to locate the
correct minima. Then the value of § could be decreased to a §; where the gradient descent no
longer converges to the desired minima. This would provide a lower bound for 5. Running
this procedure for many different gradient descent trials will produce a set B of §;. Then we
can choose [ to be greater than or equal to sup(B).

5.2 Testing Different Wave Spectra

Another way to improve the gradient descent is to test the gradient descent algorithm
by attempting to recover more complicated wave spectra. The main wave spectra we would
consider would be a summation of wave spectra from the Kataoka model [6]. Using a sum
of two or more wave spectra with different parameters would allow us to represent surface
waves composed of multiple wave trains. Testing the gradient descent algorithm on more
complicated wave spectra could allow us to fine-tune the parameters to work in a broader
range of scenarios. This may make the gradient descent code more accurate when testing on
a Doppler spectrum of unknown wave spectra.

5.3 Environmental Effects

Lastly, to optimize our algorithm, we would like to use environmental factors to try to
determine a good initial guess for the gradient descent. We hope to use the Kataoka model [6]
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for starting spectra. However, this requires us to define parameters for the significant wave
height H,, significant wave period, Ty, and wave direction ¢y. There are many environmental
factors that influence surface waves, including ocean currents and ocean depth.

First, we will discuss the effects of currents. The main effect of ocean currents is that wave
trains tend to align with ocean currents [13]. Therefore, if we have information about the
dominant currents in the radar range, then we can use this to define a direction for the initial
wave spectrum. It is important to note, however, that the current direction and dominant
wave train direction do not necessarily coincide. Therefore, it might be useful to look for an
alternative method to determine the dominant wave train direction. When water currents
oppose the wave currents, the waves are slowed. Since the wave energy is determined by its
speed and height, conservation of energy causes the wave height to increase [13]. Therefore,
if we have knowledge about the average wave height in the radar range, then data about the
ocean currents could be used to determine what wave height to use for our initial guess.

Daily 50m cuments 05 Aug. 2023.

AN
10'E

Figure 16: Bathymetric maps of Muroto coast and Ocean Current map

The ocean depth also affects the wavefronts. In particular, shallow areas tend to cause
waves to move slower. Again, this leads to an increase in wave height. Additionally, if the
wavefronts are not aligned with the ocean depth contours, then the slowing in shallower
waters causes the wave direction to change due to refraction. This could also be a useful
factor in determining the wave direction for an initial guess. However, it would still require
some initial knowledge of the wave direction at some ocean depth to be useful. Figure 16
shows the depth of the ocean around the Muroto coast. The yellow line represents a depth of
200m. The red line represents a depth of 1000m. At this contour line, there is a sudden drop
in ocean depth. Waves move faster in deeper water, but as they enter shallow water, they
slow, and the conservation of energy increases wave height. We hope that these effects can
be explored in more detail to determine how this affects the parameters in our initial guess.
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