
The Mitsubishi A-Team: Map-Matching

Jeremy J. Lin, Tomoro Mochida, Riley C. W. O’Neill, Atsuro Yoshida
Academic Mentor: Dr. Shunsuke Kano

Industry Mentors: Dr. Masashi Yamazaki, Akinobu Sasada

July 14, 2023
g-RIPS

J. J. Lin, T. Mochida, R. C. W. O’Neill, A. Yoshida Mitsubishi A 15/07 1 / 87



Introduction, Notation, Problem Summary and Statement

Table of Contents

1 Introduction, Notation, Problem Summary and Statement

2 Machine Learning Methods

3 AHP Map Matching Algorithm

4 Fuzzy Logic Map Matching Algorithm

5 Evaluation Performance

6 Preprocessing/Postprocessing

7 References

8 Misc

J. J. Lin, T. Mochida, R. C. W. O’Neill, A. Yoshida Mitsubishi A 15/07 2 / 87



Introduction, Notation, Problem Summary and Statement

Map Matching

Map matching is the process of determining the correct traveling route taken by a person or
vehicle using road network data and trajectory data obtained from GPS or other positioning
sensors.

(a) Google Map (b) Self-driving Car [1]
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Introduction, Notation, Problem Summary and Statement

Road Network

Definition (Road Network)

A road network (V ,E ) is a graph drawn on a plane.
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Introduction, Notation, Problem Summary and Statement

GPS Trajectory

Definition (GPS Trajectory)

A GPS trajectory Tr is a timeseries of points in a plane.
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Introduction, Notation, Problem Summary and Statement

Map Matching Problem

Here is the main problem our research project addresses:

Problem (Map Matching Problem)

Given a road network (V ,E ) and a GPS trajectory Tr, match Tr to the actual route in the
map.
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Introduction, Notation, Problem Summary and Statement

Previous Research

There is a lot of previous research in map matching algorithms:

1. Topological Map Matching Algorithm

2. Map Matching Based on Hidden Markov Model

3. Dijkstra’s Algorithm for Offline Map Matching
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Introduction, Notation, Problem Summary and Statement

Datasets

State of the art trajectory registration algorithms deployed at the industrial level utilize
millions of trajectories for training and inference, leveraging the device’s sensors (IMU
(accelerometer/gyroscope), speedometer, compass, etc) for improved results.

In the absence of such an expansive dataset, we are left to scour the internet for data:
Dataset Raw GPS

Timeseries
IMU data Velocity Elevation Ground

Truth

KCMMN [2] V X X X V

BDD100K [3] V V V X X

OpenStreetMaps [4] V X V V X

EnviroCar [5] V X V X X
However, none of these have IMU, velocity, AND ground truth trajectories.
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Introduction, Notation, Problem Summary and Statement

Data Fusion and Processing

In the absence of a dataset with speed, direction, IMU data, AND ground truth
trajectories, we propose to train a Graph Neural Network (GNN) on the BDD100K
dataset to approximate IMU/velocity data from the raw trajectories for use on the
KCMMN dataset.

BDD100K: 5GB compressed, 47GB as uncompressed JSON’s, 3GB after removing
trajectories with missing GPS or gyroscopic data ( 2,000 of 520,000 trajectories) and
resaving as CSV’s.

Data processed at Minnesota Super-computing Institute due to storage overhead.

What is a graph neural network?
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Machine Learning Methods
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Machine Learning Methods

What is a Neural Network?

”Universal approximator” function with layers of the form:

xk = f (W kxk−1 + bk )

f : Rdk → Rdk nonlinear function; W k ∈ Rdk×dk−1 , bk ∈ Rdk learnable
Trained to minimize some loss function over some dataset via backpropagation.

Convolutional Neural Networks (CNNs): learn a local filter of the form:

xk+1 = bk+1 +
∑

yk∈N(xk )

F k+1(xk − yk )yk

where F is compactly supported. For images and grid like data, F is just a matrix;
with pooling operations, this is incredibly powerful. Note this is a numerical
approximation to the integral

(F ∗ I )(x) =

∫
F (x − y)I (y)dy .
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Machine Learning Methods

Convolutional Neural Networks
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Machine Learning Methods

Graph (Convolutional) Neural Networks

Graph - points + pairwise connectivity, i.e. trajectories and roads. Want a network structure that can leverage the
connectivity and extract spatial-temporal features.

PyTorch Geometric (PyG) has over 100 different forms of graph convolutional neural networks implemented, each
of which leverage different properties of the graph. Of those in PyG, we identified 3 network layer structures of
interest:

1. NNConv: xk+1
i = W kxki +

∑
j∈N(i)

Fk (x
0
j − x0i )x

k
j , where Fk : Rd0 → Rdk×dk+1 is a neural network.

2. FeaStConv: xk+1
i =

1

|N(i)|
∑

j∈N(i)

H∑
h=1

qh(x
k
i − xkj )W

k
h x

k
j , where qh(z) = Softmaxh(u

T
h z + ch) is an attention

head.

3. GMMConv: xk+1
i =

1

|N(i)|
∑

j∈N(i)

H∑
h=1

gh(x
k
i − xkj )W

k
h x

k
j , where gk is a learnable Gaussian function.

We postulate that a naturally translation invariant network would be adventitious, at least for the first layer, e.g.:

xk+1
i = bk +

1

|N(i)|
∑

j∈N(i)

F k (x0j − x0i )W
k [x0j − x0i ]

but nothing of this form appears to be implemented yet in PyG - implementing such a layer is of tremendous
interest.
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Machine Learning Methods

GNN for Feature Extraction / Modeling

1. Modeling IMU/velocity data:

3 filter layers of NNConv GNN network in PyG. Each filter consists of a 3 layer neural
network.

Graph construction: 11-KNN (time) neighbors graph (this is identical to a 1D
convolution, just for proof of concept).

If successful, this will give robust approximations of the acceleration 3-vector, gyroscopic
3-vector, speed, and direction of travel.

2. Unsupervised Graph contrastive learning: (if (1.) is successful)

leverage the large size of BDD100K, KCMMN, and OpenStreetMaps data to learn more
robust features for registration.

Implement SimCLR contrastive learning framework [6] on graphs - next slide.
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Machine Learning Methods

Graph Learning Frameworks: Results

Implemented 3 layer NNConv GNN for modeling IMU data, each with 3-layer filter on
input graph.

Result: not good. Possible vanishing gradient problem.

Additionally, PyG DataParallel is not optimized for distributed models - actually slower to
use more GPU’s.

Hence, graph neural networks were not examined further for this study.

What to do instead?
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Machine Learning Methods

1D CNN’s for Modeling IMU Data

Learn local filter to estimate IMU data.

Result: not good either... possible vanishing gradients?

BDD100K data is ”questionable” - does not specify CRS for GPS points or units of
acceleration/speed. Requests for clarification have gone unanswered.

Conclusion: abandoned modeling IMU data to focus on training edge affinity function.
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Machine Learning Methods

GNNs for Learnable Edge Affinity Function

Suitable for Dijkstra’s algorithm, Fuzzy inference, etc.
Define S(e) = {i : e ∈ KNN(pi )}, D(p, e) = argminq∈e |q − p|, |D|(p, e) = minq∈e |q − p|.
Train f (e) = f (V [S(e)], [F [S(e)]; |D|(V [S(e)];D(V [S(e)], e)], e) as a neural network.
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Machine Learning Methods

Edge Affinity Model Architecture

1. Point-wise feature encoder: 3 layer neural net. Input: signed distance to edge,
projection’s signed distance to each node.

2. Feature Aggregation (pooling): to be discussed

3. Decoder (classifier): 2 layer neural net
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Machine Learning Methods

Feature Aggregation for Machine Learning (aka Pooling)

As the set of points corresponding to each edge under the inverse KNN adjacency vary in
cardinality, we need some means of aggregating the point-wise features into a single vector of
fixed size for machine learning.
We try the following as an initial implementation:

Summation:
n∑

i=1

f (xi ) - intuitively, if an edge has more nearby trajectory points, it’s more

likely in the ground truth trajectory.

Averaging:
1

n

n∑
i=1

f (xi ) - erases information on number of points, but more regularity.
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Machine Learning Methods

Results of Summation/Average pooling

Not good. Model tends to vote all trajectory, all non-trajectory, or 50-50 split.
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Machine Learning Methods

New Pooling Operations for Point-Based Networks

We Introduce a novel new pooling operation for data of varying cardinality (e.g. pointclouds):
Extract k features with maximal l1 norm and k features with minimal l1 norm:

Itop = Kargmaxi∥x [i ]∥1; Ibot = Kargmini∥x [i ]∥1

V = (x [Itop], x [bot ])

Set m = 2k. Extract:
Dot products: Ai j = Vi · Vj : i < j ( m2−m

2 values)

l1 Distances: Dij = ∥Vi − Vj∥1 ( m2−m
2 values)

l1 magnitudes: Mi = ∥Vi∥1 (m values) Vectors: V (m ∗ n (feat dim) values)
Total: 4k2 + 2kn values output.

Q: What to do if there’s not k points in the edge set?
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Machine Learning Methods

Padding

If there are fewer than k points at an edge... Let’s repeat the maximum/minimum value for
the respective max/min index set.
This introduces 0’s into the extracted distances, i.e. we tell the model not many points are
there, which can be incorporated into the decision making process. This is analogous to the
positional encodings used for transformers.
If there are fewer than 2k points: redundancies are still had, but in different places. Is this a
bad thing? Unclear.
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Machine Learning Methods

Loss Formulation

Define the y -switch operator for ease of notation: (x)y =

{
x : y = 1

1− x : y = 0

Binary Cross Entropy: BCE (x , y) = −y log(xy )− (1− y) log(1− xy )

Reweighted BCE: αyBCE (f (x), y) for α ∈ (0, 1)

Focal loss: FL(x , y) = −αy (1− xy )
γ log(xy )
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Machine Learning Methods

Results & Discussion

High training accuracy (95% overall, 84% of trajectory edges correctly identified)

Low positive testing accuracy (82% overall, 10% of trajectory edges identified. )

Q: Is this overfitting? Or is it differences in training/testing distributions? Or both?

∼ The train/test split was done by trajectory... quite possible that these vary in distribution.
∼ Overfitting - more work needs to be done to determine where excess in model is.
∼ The pooling operation results in a very large output dimension - how to best mitigate this?

Attempts to mitigate overfitting so far have resulted in lower training AND testing accuracy...
interesting.
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Machine Learning Methods

Training Results
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Machine Learning Methods

Training Results: Enlarged to Show Texture

J. J. Lin, T. Mochida, R. C. W. O’Neill, A. Yoshida Mitsubishi A 15/07 26 / 87



Machine Learning Methods

Training Results: The Good

J. J. Lin, T. Mochida, R. C. W. O’Neill, A. Yoshida Mitsubishi A 15/07 27 / 87



Machine Learning Methods

Training Results: The Bad
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Machine Learning Methods

Testing Results
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Machine Learning Methods

Testing Results
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Machine Learning Methods

Takeaways & Directions for Future Work

The model has potential... but can it outperform hand-crafted feature extraction?

Possible Model / Training improvements:

1. Modifications to training: learning rate decay, adaptive weighting, longer training time.

2. Data is very clean - add obvious measures to mitigate common-sense mistakes?

3. Input feature engineering: absolute values instead of signed distances? When/what to
normalize?

4. Pool sooner? Too many layers for an easy problem?

Data Improvements:

1. GET MORE DATA - reduce susceptibility to differences in projection

2. GET DATA WITH IMU/VELOCITY DATA

Also: apply Dijkstra’s algorithm to results for evaluation: quite possible it works even for
testing da
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AHP Map Matching Algorithm
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AHP Map Matching Algorithm

What is AHP?

The Analytic Hierarchy Process (AHP) is a method of decision making that combines
mathematical analysis with human judgment. It uses hierarchical classification to handle
complex or abstract information.

AHP has not been widely applied to map matching, so our algorithm is a relatively new
method.
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AHP Map Matching Algorithm

Flowchart of AHP Map Matching Algorithm

Input Initial Map Matching (IMM)

Junction Condition (JC)

The correct edge is
the previously selected edge

Subsequent Map
Matching (SMM)

True False
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AHP Map Matching Algorithm

Initial Map Matching (IMM)

The purpose of initial map matching is to specify the correct edge that matches the first
trajectory point p0.
The initial map matching uses:

Distance data, which is the data of the distance between the point p0 and each candidate
edge.

Direction data, which is the data of the angle difference between the heading of the first
point p0 and the direction of each candidate edge.

Using AHP, we assign a weight to each candidate edge and finally select the highest weight
edge as the correct edge for p0.
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AHP Map Matching Algorithm

Junction Condition (JC)

After IMM, SMM, and also JC itself, we always check the junction condition (JC) for the next
trajectory point, say pt . The junction condition verifies whether the point still matches the
previously selected edge. It is based on

How far the point is from the next junction point.

How small the angle difference between the direction of pt and that of pt−1 is.

If the point is considered to have not yet crossed the junction, the previously selected edge is
taken as the correct edge for that point. Otherwise, we proceed to the subsequent map
matching.
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AHP Map Matching Algorithm

Subsequent Map Matching (SMM)

The subsequent map matching (SMM) is performed on a point that fails to meet the junction
condition. It detects the matching of that point based on

Distance data (same as IMM).

Direction data (same as IMM).

Turn restriction data, which reflects if the vehicle on the previously selected edge can
legally turn onto each candidate edge.

Using these data we choose the correct edge for the point.

We go back to the junction condition and repeat this process until we reach the last trajectory
point.
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AHP Map Matching Algorithm

Implementation Result
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AHP Map Matching Algorithm

Implementation Result
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AHP Map Matching Algorithm

Implementation Result
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AHP Map Matching Algorithm

Implementation Result: Example of Mismatching

Some branches Some jumps
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AHP Map Matching Algorithm

Summary

Advantages

1. Simple and easy to understand.
2. Relatively fast.
3. Considerably good accuracy.

Disadvantages

1. Sensitive to measurement errors.
2. Large variation in accuracy depending on trajectory data.

Future work

1. Postprocessing for detecting and fixing mismatching.
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Fuzzy Logic Map Matching Algorithm
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Fuzzy Logic Map Matching Algorithm

Fuzzy Inference System
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Fuzzy Logic Map Matching Algorithm

Fuzzy Logic Map Matching algorithm

Fuzzy logic Map Matching (FLMM) algorithm consists of two main step :
Finding the correct link the vehicle is traveling on which can be divided. This step can
further be divided into two sub-step:

Finding initial correct link (IMP step)
Finding a correct link when the vehicle crosses an intersection (SMP 2)

tracking vehicle around the link and detecting whether the object crossed the intersection
(SMP 1). [7]

IMP SMP 1 SMP 2
Number of Input 4 6 6
Number of Rule 6 12 10
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Fuzzy Logic Map Matching Algorithm

Initial Map Matching Process

Input :

1. Speed of the vehicle, v (m/s)
2. Horizontal dilution of Precission (HDOP)
3. Perpendicular Distance, PD (m)
4. Heading error, HE = |θ − θ′|

Algorithm:

1. Find all candidate links inside the error bound
2. select edges with the highest FIS 1 output
3. repeat until an edges is selected consecutively

Figure: IMP implementation
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Fuzzy Logic Map Matching Algorithm

SMP 1

Additional input :

1. Speed of the vehicle, v (m/s)
2. Perpendicular Distance, PD (m)
3. ∆d = d − d2
4. Heading Increment, HI = |θ′ − θ|
5. α and β.

SMP 1 step :

1. Calculate FIS 2 score from current trajectory point and the
previous matched point and edges.

2. If FIS 2 is greater than a certain cutoff then conclude that the
current edges still in the trajectory, and calculate the
projection point.

3. Else, indicate that current trajectory is entering a junction,
and begin SMP 2 step.

Figure: FIS2 diagram
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Fuzzy Logic Map Matching Algorithm

SMP 2

Input

1. Speed of the vehicle, v (m/s)
2. Horizontal dilution of Precission (HDOP)
3. Perpendicular Distance, PD (m)
4. Heading error, HE = |θ − θ′|
5. Link Connectivity
6. Distance error, difference between distance travelled

from last position(A) and shortest path from the
last matched position(M) to the current position
(B) around the links (e.g ϵ = AB − (MO + ON))

SMP 2 step :

1. Find all candidate link inside the error bound
2. Select the edge with the highest FIS 3 output

Figure: FIS3 diagram
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Fuzzy Logic Map Matching Algorithm

Map Matching Flow Chart

Figure: map matching process
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Fuzzy Logic Map Matching Algorithm

FLMM Result

Figure: map matching process in KCMMN data set
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Fuzzy Logic Map Matching Algorithm

FLMM Results

Advantage

1. Intuitive and easy to add or remove input variable
2. Less sensitive to input errors
3. Relatively good result and less sensitive to

measurement errors

Disadvantage

1. Algorithm is slower than other method we tried.
2. Rules and parameter value in our implementations

are too simple

Future Works

1. Incorporate data driven algorithm to tune FLMM
parameter (see Figure)

2. Adding new rules to the system (e.g :deciding
whether map is urban versus suburban)

Figure: Before

Figure: After
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Evaluation Performance

Evaluation

Ground Truth
Prediction

d0

d−

d+

Err =
d−+d+

d0

d0 = length of ground truth

d− = length of prediction route erroneously subtracted

d+ = length of prediction route erroneously added

Figure: Error Formula by Newson and Krumm [8]

J. J. Lin, T. Mochida, R. C. W. O’Neill, A. Yoshida Mitsubishi A 15/07 51 / 87



Evaluation Performance

Results

AHP and Fuzzy incorporated other variable such as speed and bearing direction, which
are not available in the test dataset.

Parameter tuning needs to be done to achieve better performance.

Figure: FMM Average Error 14.7% Figure: AHP Average Error 19.2% Figure: Fuzzy Average Error 20.2%
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Preprocessing/Postprocessing

Preprocessing

Due to time constraints, we could not conduct experiment in preprocessing of mitigating stay
points and eliminating outliers, though we have already implemented it.
We expect conducting preprocessing reduces the error rate and computation time.
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Preprocessing/Postprocessing

The DBSCAN Clustering Algorithm

”Density-Based Spatial Clustering of Applications with Noise” (DBSCAN) is a clustering
algorithm based on metric information. This algorithm classifies the points into the 3
categories:

1. Core points;

2. Reachable points;

3. Unreachable points.
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Preprocessing/Postprocessing

Mitigating Stay Points by DBSCAN

Figure: Before averaging each
cluster. The red points are the
unreachable points detected by
DBSCAN, and each non-red color
represents one cluster.

Figure: After averaging each cluster.
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Preprocessing/Postprocessing

Eliminating Outliers by DBSCAN

Figure: The orange points were classified as unreachable points by DBSCAN
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Preprocessing/Postprocessing

Postprocessing

As we have seen, the routes the fuzzy logic MM and AHP find may have a lot of ”jumps” and
undesired ”branches”.
In order to deal with these problems, it may be promising to conduct postprocessing such as:

1. Interpolating the jumps;

2. Cutting off the branches.
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Preprocessing/Postprocessing

Interpolating Jumps

We propose filling the jumps simply by the shortest paths:

Figure: Jumps
Figure: Filling Jump by Shorted Paths
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Preprocessing/Postprocessing

Cutting off Branches

We propose a procedure to cut off the branches as follows:

1. Find the shortest path from the start point to the end point;

2. Subtract the edges in the shortest path from the set of the edges in the predicted route
by the map matching algorithm;

3. Remove all connected components of the shape of a linear graph.

J. J. Lin, T. Mochida, R. C. W. O’Neill, A. Yoshida Mitsubishi A 15/07 60 / 87



Preprocessing/Postprocessing

Cutting off Branches

J. J. Lin, T. Mochida, R. C. W. O’Neill, A. Yoshida Mitsubishi A 15/07 61 / 87



Preprocessing/Postprocessing

Cutting off Branches

1. Find the shortest path from the start point to the end point.

J. J. Lin, T. Mochida, R. C. W. O’Neill, A. Yoshida Mitsubishi A 15/07 62 / 87



Preprocessing/Postprocessing

Cutting off Branches

2. Subtract the edges in the shortest path from the set of the edges in the predicted route by
the map matching algorithm.
3. Remove all connected components of the shape of a linear graph.
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Miscellaneous Page
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Flow of our algorithm

Input Initial Map Matching (IMM)

Check whether the next
point is close to a junction

The correct edge is
the previously matched edge

Map Matching at
a Junction (MMJ)

NoYes
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Initial Map Matching

The purpose of Initial Map Matching is to specify the correct edge that matches the first
trajectory point p0.

Initial Map Matching takes the following steps:

1. Identify candidate edges. They are the edges that have the possibility of matching p0.

2. Assign a weight to each candidate edge. Weights are computed by using two factors:
distance and direction.

3. Take the highest weight edge as the correct edge for p0.
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Initial Map Matching: Step 2

Let e1, . . . , en be candidate edges obtained in Step 1.
First, we define the pairwise comparison matrix A = [αij ] for distance using hierarchical
classification as follows:

αij range

1 0 ≤ dj − di ≤ 1
2 1 < dj − di ≤ 3
3 3 < dj − di ≤ 5
4 5 < dj − di ≤ 7
5 7 < dj − di ≤ 9
6 9 < dj − di ≤ 11
7 11 < dj − di ≤ 13
8 13 < dj − di ≤ 15
9 15 < dj − di

1/αji dj − di < 0

Here,

di := dist(p0, ei ) = inf
x∈ei

d(p0, x),

dj := dist(p0, ej).

e e

dd

p p
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Initial Map Matching: Step 2

Based on the matrix A, we compute weights wdist
1 , . . . ,wdist

n for distance.

A geometric mean weight

e1 α11 · · · α1n
...

. . .
...

αn1 · · · αnn

n
√
α11 · · ·α1n =: g1 wdist

1 := g1/S
...

...
...

en n
√
αn1 · · ·αnn =: gn wdist

n := gn/S

S :=
∑n

i=1 gi

The same procedure is performed for the direction data and then we get weights
wdir
1 , . . . ,wdir

n for direction.
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Initial Map Matching: Step 2

Finally we define the total weight TW(ei ) for each candidate edge ei by

TW(e i) := cdistwdist
i + cdirwdir

i ,

where cdist and cdir are coefficients reflecting the relative importance of distance and
direction, given by

urban suburban rural

cdist 0.0806 0.438 0.556
cdir 0.372 0.464 0.434

The highest edge is taken as the correct edge that matches p0.
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Exmple of AHP-based map matching

Example

A =

 1 2 0.25

0.5 1 0.2

4 5 1

 .

e1 e2

e3p0

Say,

d1 = dist(p0, e1) = 10,

d2 = dist(p0, e2) = 12,

d3 = dist(p0, e3) = 3.
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IMP Algorithm

Algorithm IMP Algorithm

Count = 0
if Count ≤ 3 then
repeat
Find candidate edges
Perform FIS-1 for all candidate edge
Pick candidate edge with highest FIS-1 output
if previous selected edge = current selected edge then

Count = Count + 1
end if

until Count = 3
end if
Proceed with SMP 1
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SMP-1 Algorithm

Algorithm SMP-1 Algorithm

Stay = TRUE
if Stay = TRUE then

repeat
output = FIS-2(current trajectory, previous edge)
if output ≥ 60 then

current edge = previous edge
else

Stay = FALSE
end if

until Stay = FALSE
end if
Proceed with SMP 2

J. J. Lin, T. Mochida, R. C. W. O’Neill, A. Yoshida Mitsubishi A 15/07 78 / 87



Misc

SMP-2 Algorithm

Algorithm SMP-2 Algorithm

Find candidate edges
Perform FIS-3 for all candidate edge
Pick candidate edge with highest FIS-3 output
Proceed with SMP 1
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FIS Example

Denote PQ and ∆φ are the two primary input and
Z as an output that measure the likelihood of P
matched to Q

PQ = 18 ∆φ = 12

FIS have these following rules:

1. R1: If PQ is short and ∆φ is small then the
possibility of matching P on link AB (Z) is high.

2. R2: If PQ is long and ∆φ is large then the
possibility of matching P on link AB (Z) is low.
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Rule 1

Calculating the strength of Rule 1 (ω1)

1

0 20

Short

0.5

Figure: Membership
Function of PQ

1

0 20

Small

0.8

Figure: Membership
function of ∆φ

ω1 = min(0.8, 0.5) = 0.5
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Defuzzification Stage

Takagi-Sugeno-Kang Fuzzy Inference System :

Output =
ω1

ω1 + ω2
Z1 +

ω2

ω1 + ω2
Z2

Where : Z1 and Z2 is an output of function based on the
rule. e.g:

Z =

{
50, if possibility of matching is high

10, if possibility of matching is low
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FIS 1

Input :

1. Speed of the vehicle, v (m/s)
2. Horizontal dilution of Precission (HDOP)
3. Perpendicular Distance, PD (m)
4. Heading error, HE = |θ − θ′|

Rule :

1. If v is high and HE is small then L1 is average
2. If v is high and HE is Large then L1 is low
3. If HDOP is good and PD is short then L1 is average
4. If HDOP is good and PD is long then L1 is low
5. If HE is small and PD is short then L1 is average
6. If HE is large and PD is long then L1 is low Figure: FIS1 diagram
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FIS 2

Additional input :

1. ∆d = d − d2
2. HI = |θ′ − θ|
3. α and β.

Rule :

1. If α < 90 and β < 90 then L2 is high
2. If ∆d > 0 and (α ≥ 90 or β ≥ 90) then L2 is low*
3. If HI is small and α < 90 then L2 is low
4. If HI is small and ∆d ≥ 0 and (α or β ≥ 90) then L2 is low*
5. If HI is large and α < 90 and β < 90 then L2 is low
6. If HDOP is good and v is zero then L2 is high
7. If HDOP is good and ∆d < 0 then L2 is average
8. If HDOP is good and ∆d ≥ 0 then L2 is low
9. If v is high and HI is small then L2 is average
10. If HDOP is good and v is high and HI is 180o then L2 is high

Figure: FIS2 diagram
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FIS 3

Additional input :

1. Link Connectivity
2. Distance error, difference between distance travelled

from last position(A) and shortest path from the
last matched position(M) to the current position
(B) around the links (e.g ϵ = AB − (MO + ON))

IMP rule plus some additional rules:

1. If connectivity is low then L3 is low
2. If connectivity is high then L3 is high
3. If distance error is low then L3 is high
4. If distance error is high then L3 is low

Figure: FIS3 diagram
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Improvement to DBSCAN proprecessing

The DBSCAN algorithm has the 2
parameters:

1. The eps parameter decides the
search radius;

2. The min pts parameter decides
the threshold for a point to be
classified into a core point.

We developed a method to determine
the appropriate eps corresponding
each data instance. We expect this
method is more robust than one in
the previous research, where the eps
is fixed based on specific dataset.
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Improvement to DBSCAN proprecessing

Futhermore, we propose ”2-steps DBSCAN preprocessing”:

1. The first DBSCAN with a relatively small eps mitigates stay points;

2. The second DBSCAN with s relatively big eps mitigates outliers.
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