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1 Introduction

Map matching is the process of determining the correct traveling route taken by a person or vehicle
using a road network (map) and trajectory data obtained from GPS or other positioning sensors. While
it may be easy for humans to estimate, it is difficult to implement as an algorithm. Handling GPS errors
and route selection at junctions and parallel roads well is the key to accurate map matching. Various map
matching algorithms have been provided so far and they are typically classified into four types depending on
the method used: geometric, topological, probabilistic, and advanced map matching. Each of these methods
has its advantages and disadvantages in terms of accuracy, implementation, generalizability, assumptions,
etc. In last year’s g-RIPS Sendai 2022 Mitsubishi-A project [Aka+22], three methods were proposed for
registration: Wasserstein method, electrical force method, and harmonic oscillator method.

Our aim of this project is to develop new map matching algorithms to improve upon previous work.
We propose four key approaches: signature curve geometric registration, deep learning based registration,
AHP map matching, and reinforcement learning-based Fuzzy logic. We implemented and tested these four
approaches (as well as combinations of them) and compared their performance with existing algorithms.

2 Notation, Problem Summary, and Statement

2.1 Notation

We formulate a graph-theoretic formulation of roads as follows:

Definition 2.1. Graph - a set of points V = (v1, v2, . . . , vn) ⊆ Rd equipped with a list of edges E =
{(ei,1, ei,2)}mi=1 ⊆ Nn × Nn (Nn = (1, 2, ...n)) which denotes connected pairs of points, i.e. vei,1 connects to
vei,2 for all 1 ≤ i ≤ m. We assume ei,1 ̸= ei,2 ∀ i to avoid storing needless information.

Definition 2.2. Vertex / Node - a point in a graph. We use these terms interchangeably.

Definition 2.3. Road Network - a directed graph G representing roads under the geometric realization. We
leave this deliberately broad, possibly including both junction points and intermediary points:

Definition 2.4. Junction point - a vertex pi in a road network with a degree of connectivity di that satisfies
di = 1 or di ≥ 3 ∀ i = 1, N . Intuitively, this is a point where one’s trajectory can or must change (without
taking an illegal u-turn); while the degree 1 points are not ”junctions,” these are still important points that
must be considered when examining the connectivity of the map graph.

Definition 2.5. Intermediary point - a vertex in a graphical representation of a road with a degree connec-
tivity 2. Intuitively, this is a point where one’s trajectory cannot change (without taking an illegal u-turn or
exiting the road network.

Define the road segment and map adjacency graph as follows:

Definition 2.6. Road segment - a directed subgraph of the road network where the two end nodes n1 and
nN are junction points (i.e. a degree of connectivity that satisfies di = 1 or di ≥ 3 ∀ i = 1, N), and all
intermediary nodes between them are strictly degree 2 (di = 2 ∀ 1 < i < N).

This is simply to say that if one is on a road segment, one cannot alter one’s trajectory unless one travels
to an end of the segment (unless taking a U-turn). We leave U-turns to another matter of pre/postprocessing.

We also define

Definition 2.7. Map adjacency graph - an abstraction of the road network that encodes the connectivity of
road segments - i.e., what path decisions one has when driving or walking. Each edge is a road segment.

2.2 Problem Summary and Statement

Let us fix d ≥ 2 (but almost everywhere we consider the case d ∈ {2, 3}).

Definition 2.8 (Trajectory). A trajectory T is a timeseries of points P = (p1, p2, . . . , pn) ⊆ Rd equipped
with several features F = (f1, f2, . . . , fn) ⊆ Rk, where k ≥ 1. We mandate that F at least includes times-
tamps, but could possibly include additional attributes, as explained thus:
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1. Timestamp - a sequence Tt = (t1, t2, . . . , tn) ⊆ R+ = [0,∞) that is strictly increasing (t1 < t2 < · · · <
tn).

2. Speed (optional) - a sequence Ts = (v1, v2, . . . , vn) ⊆ R+.

3. Direction of travel/head (optional) - a sequence of unit vectors Tu = (u1, . . . , un) ⊆ Sd which are the
unit velocity vectors (”direction”) of each point in the trajectory.

4. Acceleration (optional) - a sequence Ta = (a1, a2, . . . , an) ⊆ R.

5. Gyroscopic measurements (optional) - a sequence Tg = (g1, g2, . . . , gn) ⊆ Rc.

6. Elevation data (optional) - Tz = (z1, z2, . . . , zn) ⊆ R.

7. other features (optional) - To = (o1, o2, . . . on) ⊆ Rq. These may include signature curves (in R2), other
geometric features, and features learned from machine learning, all of which shall be discussed later.

Remark 2.9. It is worth noting that the speed, acceleration, and gyroscopic sensors may not sample at the
same rate as the GPS sensor - usually at a higher sampling frequency. However, g-RIPS Sendai 2022 [Aka+22]
implemented an interpolation algorithm to align/fuse these data to the GPS points. As a consequence, we
do not need to worry about misaligned sampling frequencies, and we are immeasurably grateful for this
foundation to work off of.

We now define the map-matching problem on which we shall work for the rest of the summer:

Problem 2.10. Map-Matching Problem. Given a road network (V,E) and a GPS trajectory T with features
F and coordinates P , match T to the ground truth (or closest) route taken in (V,E). There are two main
subsets of map matching:

1. Online map matching, or ”live” matching - this is intended to happen in real-time as an entity traverses
a route. This has many applications for autonomous navigation systems.

2. Offline map matching - this happens after an entity’s entire course of movement has been completed,
used to register the complete trajectory from point A to point B. This has many applications to map
synchronization and map fusion problems.

The main goal of this project is to develop innovative new methodologies that can be leveraged in online
and/or offline registration of GPS trajectories using several different approaches, ideally with greater gener-
alizability, reduced error, and applicability to modern industrial applications at scale. In doing so, we hope
to achieve a new paradigm for unsupervised GPS feature extraction, geometric/topological/learned feature
registration, and fuzzy registration vis-a-vis reinforcement learning and other state of the art technologies.

3 Background

In this section, we briefly review several existing map matching techniques: Topological Map Matching
Algorithms, Fuzzy Logic Map Matching Algorithms, Dijkstra’s Algorithm for Offline Matching, and Deep
learning for Trajectory Registration.

3.1 Topological Map Matching Algorithm

The classical geometric map matching algorithm, such as point-to-point, point-to-curve, and curve-to-
curve map matching algorithms, uses only geometric information, i.e., coordinates of trajectory points and
distance. It focuses only on the arc shape and does not reflect other information. Therefore, although it has
the advantage of being simple and fast, it lacks accuracy. In order to improve the geometric map matching
algorithm, the topological map matching algorithm uses other factors such as connectivity, proximity, and
contiguity of edges in addition to the geometric information. Here, we present Greenfeld’s algorithm [Gre02].

His algorithm consists of two methods, which he called InitialMapping() and Map(). The first algorithm
InitialMapping() finds an initial match of a point to a vertex. It is applied in the following situations:
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1. When the first GPS point p0 is received.

2. When the distance between the new GPS point pt and the point pt−1 exceeds a pre-selected distance
tolerance.

3. When the main map matching algorithm is unable to successfully map a particular GPS point.

When these situations are met, InitialMapping() algorithm is executed according to the following steps:

1. Find the closest vertex v0 to a point p0. This is essentially a geometric only matching process.

2. Determine all edges in the road network that are connected to node v0.

3. Map the next point p1 onto one of the selected edge e1.

The second algorithm Map() is applied only after an initial match found by InitalMapping(). It is the
main algorithm of his approach that uses topological reasoning and a weighting scheme to match a point pt
with an edge et. It takes the following steps:

1. Obtain the next GPS point pt.

2. Form a GPS line segment between points pt−1 and pt.

3. Evaluate the proximity (distance) and orientation (direction or azimuth) of the GPS line to the currently
matched edge et−1 and determine whether pt maps onto the edge et−1.

4. If pt maps onto et−1, set et := et−1. Otherwise, find another edge, et, which is either connected to
et−1 or is nearby downstream from et−1. The edge et is also selected based on the same proximity and
orientation evaluation scheme.

5. Go back to Step 1.

As a method of the evaluation in Step 3, he assigned a weight to the edge et−1 according to the direction
of the GPS line segment pt−1pt, the distance between pt and et−1, and the intersection of pt−1pt and et−1.
This is the topological part of his algorithm.

Remark 3.1. It is worth noting that he was focusing on online map matching, so when considering a point
at a certain time his algorithm (basically) used no more information about future points than that point.

His program is simple and straightforward but has some problems including:

1. InitialMapping() is less accurate, since it simply takes the closest vertex.

2. He considered that proximity is the most important factor to determine weights, but this is not always
true. For example, Quddus [Qud+03] reported the following case (see Figure 1): His algorithm can
detect that both points p1 and p2 match the edge e1. However, for point p3, his algorithm gives the
mismatching to the edge e2 instead of e4.

3 Since his algorithm only uses information available from coordinates, it is heavily influenced by outliers.

In Subsection 6.1 we introduce a revised topological map matching algorithm that incorporates the analytic
hierarchy process and uses direction and speed data of trajectory points in addition to distance data.

3.2 Fuzzy Inference System

Fuzzy logic is an approach to computing based on degree of truth, usually represented as probability
ranges from 0 to 1 rather than the usual boolean logic. Fuzzy logic aims at modeling the imprecise modes of
reasoning that play an essential role of human rational decision making and can be viewed as the extension
of multi valued logic ([Zad88]). A Fuzzy Inference System is the framework for applying fuzzy logic to obtain
a numerical output from a given input.
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Figure 1: Mismatching in Greenfeld’s algorithm

Definition 3.2 (Fuzzy Inference System). Fuzzy Inference System (illustrated in figure 2) is a process of
formulating mapping from an input to an output using some if-then rules. The FIS rule base is made of N
rules of the following form :

Ri :If S1 is Li
1 and · · ·Sp is Li

p

Then Yi

where :

• Rule R = (R1, R2, . . . , RN ) , Ri is the ith rule base.

• Crisp input is a vector S = (S1, S2, . . . , Sp) ∈ Rp

• Fuzzy input is a vector L = (L1, L2, . . . , LN ), Lj = (L1
j , L

2
j , . . . , L

p
j ) ∈ [0, 1]p such that Li

j ∈ [0, 1], in

where decision making process occurs. where Li
j represent the transformed value of input Sj in rule

Ri.

• Membership function µLi
j
: R → [0, 1] (resp. µOi

j
) is a function that transformed input (Sj) (resp.

fuzzy output Yj) into fuzzy input Li
j . (resp. output O

i
j).

• Fuzzy output Y = (Y1, Y2, · · · , Yq) such that Yi is the ith solution calculated from fuzzy input.

• Crisp Output or conclusion O = (O1
1, O

2
1, · · · , ON

q ) is the linguistic output variable Yj in rule Ri

Fuzzy inference system algorithm consists of three main steps illustrated by figure 2 :

1. Fuzzification: fuzzifying input values (S) with membership functions(µLi
j
) to a fuzzy input(L).

2. Fuzzy inference step: operating all applicable rules from fuzzy input (L) to fuzzy output (Y ).

3. Defuzzication: De-fuzzifying fuzzy output(Y ) set back to a crisp output value (O).

In the following example we will discuss a simplified version Fuzzy Inference System given by Qud-
dus [QNO06].
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Figure 2: Fuzzification-Defuzzification pipeline.

Figure 3: three legged junction example

Example 3.3. Suppose we would like to decide which link (DA, AB, or AC) does vehicle at position p2
travels in a three legged junction illustrated in figure 3. Denote PQ as the perpendicular distance from P
to link AB, θ as the direction of the vehicle at P obtained from the navigation sensor, and ∆φ = |90◦ − θ|
as the angular difference of the vehicle. Suppose PQ and ∆φ are the two primary determining factors, also
referred to as crisp input, as to whether P is matched to AB. A knowledge based rules can be formed based
on these two inputs, for example :

1. R1 : If PQ is short and ∆φ is small then the possibility of matching P on link AB is high.

2. R2 : If PQ is long and ∆φ is large then the possibility of matching P on link AB is low.

Where terms such as short (or long) and small (or large) are linguistic values that can be defined on the
range of PQ and ∆φ. We can start step 1 by transforming our crisp input PQ (S1) and ∆φ(S2) into a fuzzy
input denoted by L1 = (L1

1, L
2
1) and L2 = (L1

2, L
2
2) using some membership function (µLi

j
) where i, j ∈ 1, 2

that is known from domain knowledge.
Once the input is fuzzified, we can proceed to the next step by evaluating a fuzzy output using some

fuzzy operator. The ”if” part of the rule (e.g. PQ is short) is called an antecedent or premises. When the

7



Page 8 of 38 g-RIPS Sendai 2023, MITSUBISHI-A Group

rule consists of more than one antecedent we can use fuzzy operators to evaluate the results of the rule, also
commonly called rule strength. Two fuzzy operators that are normally used are the AND and OR operator.
Min (minimum) and prod (product) are popular functions for AND operator, while max (maximum) and
probabilistic OR are widely used for OR operator [QON07].

In this example, suppose PQ is equal to 15m and φ = 15◦. Figure 7 and figure 11 illustrate how we can
calculate the fuzzy inputs (L1, L2) and strength of each rules. The strength of each rules are calculated by
applying the min function for the AND operator. Since the fuzzy input from the first rule are L1

1 = 0.5 and
L1
2 = 0.8, the strength of the first rule is equal to min(L1

1, L
1
2) = 0.5. Similarly, since the fuzzy input for rule

two is equal to L2
1 = 0.4 and L2

2 = 0) so the strength of the first rule is equal to min(L2
1, L

2
2) = 0.

1

0 20

Short

0.5

Figure 4

1

0 20

Small

0.8

Figure 5

100

1

0 50 100

High

Rule
Strength
= 0.5

Figure 6

Figure 7: Rule 1

1

0 20

Long

0.4

Figure 8

1

0 15 60

Large

0.0

Figure 9

100

1

0 50 100

Low

Rule
Strength
= 0.0

Figure 10

Figure 11: Rule 2

We can then convert this rule strength into a fuzzy output(Y = Y1, Y2) using two membership function
shown in the figure 6 and 10. Lastly we can proceed to defuzzifying step where we aggregate these fuzzy
output into a crisp output(O1). Area of the centroid (Mandani FIS method) or linear combination of each
output(Sugeno FIS method) are one of the few common de-fuzzifying methods that can be used for our final
decision making process.
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3.3 Dijkstra’s Algorithm for Offline Matching

Rather than do an exhaustive brute-force map matching algorithm, which requires O(n2) computations,
many state of the art algorithms (e.g. Valhalla [SH22]) employ Dijkstra’s algorithm [Dij59], and [Aka+22]
utilized Dijkstra’s [Dij59] as well. For a given graph, this employs a greedy registration framework with edge
weights to identify the path from a starting point to end point that best minimizes the total edge weights.
Interestingly, Dijkstra formulated the algorithm in only twenty minutes and published it as a 3 page ”note
on two problems in connexion with graphs”, and it remains one of the most infleuntial algorithms in graph
theory and shortest path methods.

The algorithm is shown in Algorithm 1. Select p0 as the starting node and, let di denote the ”distance”
(i.e. lowest sum of weights on connecting edges) from p0 to node pi.

Algorithm 1: Dijkstra’s Algorithm

Input: Graph G, source node p0
Output: Shortest distances from p0 to all other nodes

1 Initialize distance to p0 as 0 and all other nodes to ∞ Create a priority queue Q; Insert p0 into Q.
2 while Q is not empty do
3 Extract node u with minimum distance from Q; foreach neighbor v of u do
4 if distance to v through u is shorter than current distance then
5 Update distance of v to the new shorter distance;
6 end if
7 if v is not visited then
8 Add v to Q;
9 end if

10 end foreach

11 end while

Note: this algorithm was typeset by ChatGPT [Ope23a], with minor modifications, corrections, and
changes of notation. We have verified with [Dij59] that it is indeed correct. This is the only portion of the
report written or typeset using ChatGPT.

3.4 Deep learning for Trajectory Registration

Relatively little has been done (publicly) in the way of deep learning for GPS trajectory registration
due to the lack of large, publicly available labelled datasets with many features. [Liu+20] utilized a rather
exhaustive geometric, topological, and speed matching (i.e. max feasible speed of the roadway) analysis to
propose candidate routes. Finding the rigid speed matching unideal, they deploy machine learning to predict
each road’s speed using a bidirectional Conv-LSTM RNN. The training of this Conv-LSTM requires road-wise
traffic usage data, which we do not have access to. Other approaches such as [WT16] also employ historical
data to train a Hidden Markov Model (HMM), but their data is not public either. [HK16] employed a simple
2 layer neural network to reposition the GPS points slightly prior to inputting them into the registration
algorithm - interestingly, they implement it for real time applications, which were trained using the horizontal
displacement between the GPS point and the ground truth trajectory for selections from the OpenStreetMaps
[Ope23b] traces data.

4 Our Approach

4.1 Stay Point Mitigation and Outlier Detection by DBSCAN

It is known that stay points and outliers which may be caused by GPS errors may prevent map matching
algorithms from finding the correct route. It is researched in [Jaf22] that Density-Based Spatial Clustering
of Applications with Noise (DBSCAN) [Est+96] may be utilized to detect and mitigate stay points in a
GPS trajectory. In this research project, we developed a method to utilize DBSCAN to detect outliers.
Furthermore, in addition to these applications, we propose a method to automatically determine a parameter

9
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passed into the algorithm according to each input of points. Although we could not actually integrate the
methods that we developed into map matching algorithms due to the time constraints of this research project,
we managed to implement the methods in Python and expect that it will improve the performances of our
algorithms. The details of these methods are talked about in Subsection 9.1.

4.2 Datasets

The GPS data that is publicly available is severely lacking, especially for the purposes of deep learning.
State of the art open-source frameworks like Valhalla [SH22] utilize over 18 million verified trajectories to train
their registration framework (a Hidden Markov Model), but this trajectory data is not open-source. Compa-
nies like Google and Apple, the creators of two of the most popular navigational smartphone applications,
certainly have access to far more trajectory data than that to train their models.

If we are to come anywhere close to the success of existing industrial models with a data-driven approach,
we are going to need an extensive amount of data. The largest datasets we can access (or plan to assemble)
are thus:

1. KCMMN - ”Dataset for testing and training of map-matching algorithms” [Kub+15a] - 100 different
trajectories spanning over 5,000 km of roads across the globe. Features are restricted to GPS coordinates
and timestamps only; has verified ground truth trajectories.

2. BDD100K [Yu+20] - 100,000 trajectories of 40 second travel sequences. Contains GPS coordinates,
timestamps, IMU data (highly accurate speed, direction, and gyroscopic data), and videos; has no
ground truths.

3. OpenStreetMaps Traces [Ope23b] - very large, publically available dataset consisting of GPS coordinates
and elevation data for many trajectories collected around the globe. The dataset is constantly growing.
Notably there is no IMU data or ground truth.

4. 2022 G-RIPS Mitsubishi-A data - collected from former participants walking around Sendai. Unclear
if it is just GPS coordinates and timestamps or if it contains IMU data as well. Should have ground
truths, but we have not yet seen the data at this time.

We can summarize the publicly available data as follows and see the clear gaps:

Dataset Raw GPS
Timeseries

IMU data Velocity Elevation Ground
Truth

KCMMN [Kub+15a] V X X X V
BDD100K [Yu+20] V V V X X
OpenStreetMaps
[Ope23b]

V X V V X

EnviroCar [Env23] V X V X X

This incentivizes some means to infer IMU/Velocity/Elevation data for the KCMMN dataset, the only
one with ground truth: i.e. data fusion.

4.3 Data Fusion: Estimating IMU Data for KCMMN

In the absence of a large trajectory dataset equipped with both IMU data and ground truths, we propose to
first leverage the BDD100K data (with IMU data) to estimate IMU data for the KCMMN trajectories. This
can be readily achieved using a physics-informed neural network with filtering, or a relatively lightweight
GNN, RNN, or transformer. Such data may also be estimated for the OpenStreetMaps trajectory data,
provided it works well for KCMNN.

Speed and direction of travel are of greater intuitive interest than the gyroscopic measurements, but we
should try to estimate all possibly useful values that we can. These quantities may also be approximated
directly from the GPS trajectories and timestamps with some form of local filtering and/or regression.

10
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4.3.1 Preliminary Results and Changes to Approach

We first implemented a 3-layer NNConv GNN using PyTorch Geometric (PyG) to model the IMU data
using graphs built off the GPS trajectories using the BDD100K dataset; each layer of which used a 3-layer
network to weight the features based on the differences in the input trajectories. Overall, this failed, despite
modifications to the loss to use percent error instead of absolute error. Despite PyG having a DataParallel
module (notably one with exceptionally poor documentation and no examples), training with multiple GPU’s
was exceptionally slow and tedious (it was only realized later that CSV’s read in 16x slower than NPZ files, but
even after converting the data, it was still very slow). It remains a very curious matter. Finally, after PyG’s
distributed processes crashed two A-100 GPU’s at the Minnesota Super-computing Institute, we resorted to
abandon PyG and try a 1-dimensional CNN instead.

It appears that the 1D CNN experienced vanishing gradients, ultimately returning all 0’s. It was then
thought that this was due to the padding (most trajectories in the BDD100K had about 40 points, but a few
had 80), but after implementing a masking framework for the loss, this still converged to 0’s. After various
attempts to remedy this, we ultimately decided to focus on training the edge affinity function instead.

Given the difficulties in training an accurate model with the BDD100K dataset [Yu+20] (and paired with
unanswered requests for clarification on the units on the BDD100K data), we elected to approximate the
velocities and directions of travel for the KCMMN dataset [Kub+15a] using simple 1D differentiation filters.
While most of the data follows regular sampling, a few points have irregular timesteps, which makes higher
order differentiation filters a little more challenging to implement. Ultimately we used the neighboring two
point approximation to approximate the velocity:

v(x[i]) ≈
⇀p[i+ 1]− ⇀p[i− 1]

t[i+ 1]− t[i− 1]

From this, we approximate the speed ∥v(⇀p[i])∥ and direction of travel as the angle from the x-axis. This
allowed our Fuzzy-Inference and AHP based methods to run on KCMMN. In the future, far more robust
approximations should be used, i.e. local parametric curve fitting from the timestamps, but time did not
allow this to be implemented.

5 Dijkstra’s Algorithm with Learnable Edge Affinity Function (DA-LEAF)

We propose here a novel framework for offline matching using machine learning.

5.1 Motivation

In the ideal setting, we would have many features for the raw GPS trajectories (x-y coordinate, timestamp,
speed, direction, gyroscope readings, learned features from contrastive learning, curvatures, etc). However,
the ground truth routes in the KCMMN dataset [Kub+15a] only have an ordered set of map edges with
no timestamp - i.e. we only have x-y coordinates, and possibly approximations for curvatures after curve
fitting. While registration is conceivable with these quantities alone, it is conceivably adventitious to utilize
more information. To this end, we propose a learnable K-Nearest Neighbor edge weighting scheme for
Dijkstra’s algorithm: DA-LEAF, or Dijkstra’s Algorithm with Learnable Edge Affinity Function. The regime
is illustated in Figure 12 and described momentarily.

11
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Figure 12: Learnable weights for Dijkstra’s algorithm.

Recall the definitions of road segment and map adjacency graph:

Definition 5.1. Road segment - a directed subgraph of the road network where the two end nodes n1 and
nN are junction points (i.e. a degree of connectivity that satisfies di = 1 or di ≥ 3 ∀ i = 1, N), and all
intermediary nodes between them are strictly degree 2 (di = 2 ∀ 1 < i < N).

This is simply to say that if one is on a road segment, one cannot alter one’s trajectory unless one travels to
the end of the segment (unless taking a U-turn). We leave U-turns to another matter of pre/postprocessing.

We also define

Definition 5.2. Map adjacency graph - an abstraction of the road network that encodes the connectivity of
road segments - i.e., what path decisions one has when driving or walking. Each edge is a road segment.

Given the trajectory graph Tr = (V,E, F ), where V = {p1, p2, ...pK}, and the features F contain (optional)
auxiliary information about each vertex (speed, direction of travel, gyroscopic readings, elevation, signature
curvature, learned features from contrastive learning, etc.), we formulate a learnable Dijkstra’s weighting as
follows:

DA-LEAF Reverse K-NN Search and Edge Affinity Training Algorithm

1. For each point in the GPS trajectory, retrieve the K-Nearest Neighboring road segments.

2. Compute the displacement vector to the road segment from each trajectory point, i.e.
D(p, e) := p−Argmin

q∈e
|p− q|. Denote |D|(p, e) := minq∈e |p− q|.

3. For each road segment (edge) e in the sub-map adjacency graph (edges within buffer of the GPS
trajectory), extract all GPS point indices that bear the edge as a K-nearest neighbor (i.e. S(e) := {i :
pi ∈ V, e ∈ KNN(pi)}). Note: these indices can be precomputed for training, but strong augmentations
on the map and point data (i.e. adding GPS coordinate noise that could affect KNN, noise to map
coordinates) would require recomputing KNN. This could be done in a parallel fashion for training.

4. Train an edge weight function f(e) = f(V [S(e)], F [S(e)], D(V [S(e)], e), |D|(V [S(e)], e)) as a neural
network. The function should be high when e is in the ground truth trajectory, and low when e is not
- this is how we formulate the loss.

5. Use this edge weight function with Dijkstra’s algorithm.

5.1.1 Implementation: Data Processing & Model Input

Given unforeseen difficulties in accurately modeling IMU/acceleration/speed data from the GPS trajec-
tories, we resolved to implement the edge affinity model using just the GPS trajectory points in the reverse
K-NN edge search with K = 5 for each trajectory point. Assuming that the edge affinity for an edge is 0 if
no trajectory points map to it, this helps mitigate computational overhead and ease of training.

We considered implementing graph neural networks for this task, but the graph construction requires some
non-trivial consideration as the adjacent GPS points can be very sparse and vary greatly in the temporal

12
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domain. This, paired with our previous difficulties with GNN’s and Pytorch Geometric, lead us to implement
a point-cloud based network instead using 3 inputs: signed distance to the edge, projected signed distance
to the first node, and projected signed distance to the second node. Figure 13 shows these 3 quantities. We
also considered using the GPS timestamps as well, but empirical results have not shown a strong motivation
for doing so.

The K-NN point to edge search was done via exhaustive distance computations over the entire map
subgraph, which is computationally exhaustive. Certainly there are ways of expediating this computation by
means of say, a K-D tree, depth-first search, or spatial buffer query, but these methods were not explored for
the purposes of time.

Figure 13

5.2 Model Architecture & New Pooling Operator

The network structure consists of 3 key components:

1. Point-wise feature encoder: 3 layer neural net.

2. Feature Aggregation (pooling): to be discussed.

3. Decoder (classifier): 2 layer neural net.

As the point-sets vary in size for each edge, we need some form of feature aggregation (pooling operation)
to produce something of consistent shape for classification. As first attempts, we tried:

1. Summation:

n∑
i=1

f(xi) - the more nearby trajectory points an edge has, the more likely it’s in the G.T.

2. Averaging:
1

n

n∑
i=1

f(xi) - erases information on number of points, but more regularity.

Overall, these pooling operations did not work well: the model tended towards voting all one class or the
other, or some 50:50 mixture of predictions. This alone does not suggest these pooling operations are unideal:
class imbalance may be to blame as the GPS trajectory edges comprise less than 10% of all the edges that
are a GPS K-NN neighbor (so even fewer of the total edges in the extracted subgraph). To test whether class
imbalence was to blame or these pooling operations are genuinely bad, a variety of losses were considered,
including Binary Cross Entropy (BCE), a reweighted BCE (RBCE) to penalize mispredicting ground truths
more, and the Focal Loss [Lin+17]. The latter two aim to account for class imbalance more; the Focal Loss
is a further improvement upon the RBCE as it penalizes mispredictions more and maintains a reweighting
factor. Define the y-switch operator for ease of notation:

(x)y = xy =

{
x : y = 1

1− x : y = 0

13
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The loss terms for each model output x and corresponding ground truth label y are as follows:

Binary Cross Entropy: BCE(x, y) = −y log(xy)− (1− y) log(1− xy) (5.1)

Reweighted BCE: RBCE(x, y) = αyBCE(x, y) : α ∈ (0, 1) (5.2)

Focal loss: FL(x, y) = −αy(1− xy)
γ log(xy) [Lin+17] (5.3)

The summation and averaging pooling layers were tried with all of these losses, but none of these yielded any
improvements in classification accuracy: hence, some other form of feature aggregation is necessary.
To this end, we implemented a (seemingly) new and novel form of pooling for point cloud networks. Instead
of relying on a single extracted feature (mean, average), we instead extract several features that maximize
or minimize a selected measure of similarity. We utilized the l1 norm, but others are feasible (i.e. squared
l2). The procedure is thus: Extract k features with maximal l1 norm and k features with minimal l1 norm:

Itop = k-argmaxi∥X[i]∥1; Ibot = k-argmini∥X[i]∥1

Where k-argmax/min returns the indices of the k highest and lowest values, respectively. We utilized k = 10
for our implementation. Then, concatenate these values into a single array:

V = (X[Itop], X[Ibot])

Set m = 2k. Extract:

1. Dot products: Aij = Vi · Vj : i < j ( m2−m
2 values).

2. l1 Distances: Dij = ∥Vi − Vj∥1 ( m2−m
2 values).

3. l1 magnitudes: Mi = ∥Vi∥1 (m values).

4. Vectors: V (m ∗ n (feat dim) values).

Flattening all these arrays and concatenating for a single vector yields a total of 4k2 + 2kn output values.
But as mentioned before, some edges have very small point-sets: what is to be done when there are not k
values?

To remedy this matter, we implement a padding operation for the pooling layer: if there are fewer than
k points at an edge, we pad the output indices by repeating the index corresponding to the max/min value
for Itop / Ibot (respectively). This introduces 0’s into the extracted distances, i.e. we tell the model that there
are not many points coinciding at the edge, which can be incorporated into the decision making process. This
is analogous to the positional encodings used for transformers. If there are fewer than 2k points: redundancies
are still had, and 0’s appear in different places of the distances, so the model can still be ”aware” that there
are still realtively few points nearby.

For the final implementation, we used a 3-layer encoder: R4 → R60 → R120 → R60, which corresponds
to an output with 1600 values after pooling. From here, another 3-layer neural network serves as the classi-
fier: R1600 → R60 → R30 → R1 for the output probability. All layers used Rectifed Linear Units (ReLU) for
activation except the last layer, which used the sigmoid function for a 0-1 probability value.

We also briefly examined normalizing vs. not normalizing the projected sets by dividing by the length
of the edge, and using the absolute distance instead of oriented distance. This necessitates further experi-
mentation, as does the use of gradient clipping, dropout, and batch normalization to mitigate overfitting and
aid training.

5.3 Dijkstra’s Algorithm From Edge Affinity Weights

The edge affinity model produces 0-1 probabilities, which we must convert to a weighting for Dijkstra’s
algorithm. Dijkstra’s seeks to follow the path with the lowest weight, so we must invert the spectrum and add
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some nonlinearity to heighten the difference between 0’s and 1’s (0’s should become almost non-traversable,
i.e. very high weight, 1’s should have 0 weight). Thereby, we construct the weights as thus:

W (p) = − log(p+ ϵ)− log(1 + ϵ)

adding the ϵ to avoid infinities and the second term to ensure everything is positive; ϵ = 10−6 worked well
for our experiments.

For implementation, we assume the starting and ending nodes are the map vertices closest to the start
and end GPS points - there’s possible room for improvement here, but time was a limiting factor. Dijkstra’s
algorithm is then used to extract the shortest path in between the points.

5.4 Computational Implementation

All code was implemented in Python. All edge affinity models were implemented in PyTorch; Scipy’s
sparse implementation of Dijkstra’s algorithm was used, and Numpy was used for intermediary processing.
The 100 trajectories in the KCMMN dataset [Kub+15a] were split on a 80:20 training to testing split, which
corresponds to 251,095 edges with non-empty point sets for training. The latitude-longitude coordinates were
projected from WGS-84 (EPSG:4326) to OpenStreetMaps meter coordinates (EPSG:3857) for computation
of distances. EPSG:3857 was used as it is a global frame and the KCMMN trajectories are in both Europe
and North America - notably this could lead to distortion, and better local coordinate systems should be
considered for possible improvements.

Our final model was trained for 10 epochs on the BDD100K dataset at the Minnsota Super-computing
Institute on a single A-100 GPU - this took about 3 hours. Further training was halted due to system
maintenance, but this seems to have been sufficient.

5.5 Trajectory Segmentation Via Junction Classification

Figure 14: Junction point identification for GPS trajectory segmentation.

As suggested by Gabriel Gress, the ability to cluster GPS trajectories into segments prior to registration
would be a highly computationally adventitious innovation as it would drastically reduce the number of
candidate paths and branches that need to be examined (with Dijkstra’s or otherwise) and also give a smaller
area of candidate paths. This would also make the computation parallelizable (with some after-the-fact path
connection verification and possible refinements, if necessary).

One could examine modern deep clustering techniques [Ren+22], but these tend to be more interested in
clustering each input into a corresponding cluster - not clustering each input into several clusters. Moreover,
this is more akin to a segmentation problem. However, if one deliberates the matter a little further, the 1-D
segmentation problem boils down to identifying key junction points - i.e. where one turns from one road
segment to another - which is easily regarded as a binary classification problem.
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To train such a model requires verified trajectories - i.e. the [Kub+15a] dataset. A training set is easily
assembled by identifying the GPS points closest to the road junctions where turns occur as the juncture
points, and all other points as non-juncture points. Naturally, the identification depends on the GPS sampling
frequency, and if dense around the junction points, one could enlarge the juncture point class (if within d
distance and K-nearest neighbors of the point). The model could simply be a GNN, RNN, or transformer.
Once trained, it can immediately be used for identifying possible junction points. In practice, it is better
to have a model that identifies all true-positives with several false-positives than miss several true-positives,
and this should be considered when formulating the loss.

5.6 Stay-Point and U-Turn Detection

The matter of determining when an entity has ceased moving and when it has taken a U-turn (particularly
within a road segment) is of critical import for preprocessing our GPS trajectories, and time permitting, we
will explore deep-learning approaches to identify/cluster such regions of the GPS timeseries. It is highly
conceivable to hand-craft such detection using heuristics, but [JEN22] employed Density-Based Spatial Clus-
tering of Applications with Noise (DBSCAN) to detect them, which achieved significant data reduction and
processing time with the same accuracy. It is unclear at this time how to improve upon DBSCAN - an
algorithm that has earned the ”Test of Time” Award, but we could attempt to do so by training a network to
leverage the unique timeseries-graph structure of GPS trajectories. It is unclear how such would be trained
in practice, but the matter merits further investigation.

6 Map Matching Algorithms

In this section we propose two map matching algorithms: AHP map matching algorithm and Fuzzy logic
map matching. Our algorithms are classified as online map matching (Problem 2.10). They find the correct
edge for each trajectory point. The flowchart of algorithms is shown in Figure 15. Algorithms are divided into
three phases: initial map matching process (IMP), subsequent map matching process along a link (SMP1),
and subsequent map matching process at a junction (SMP2). Once input is obtained, we run IMP to find
the correct edge for the first (few) trajectory point(s). After IMP, we run SMP1 to verify whether the next
point still matches the same edge as the previous point. If yes, we repeat SMP1 for the next point. If not,
we execute SMP2 for that point to find the correct edge. Then we go back to SMP1 and continue this
process until we reach the last trajectory point. The details of each algorithm are explained in the following
Subsections 6.1, 6.2.

6.1 AHP Map Matching Algorithm

The AHP stands for the analytic hierarchy process. This is a decision-making method that combines
mathematical analysis with human judgment. It utilizes hierarchical classification to deal with complex and
abstract information. AHP has not been used much for map matching. To the best of our knowledge, the
only paper that mentions AHP is the one by [Mah+22], but even then different methods are used. So this
algorithm is relatively new and also simple and easy to understand.

The AHP is incorporated into IMM and SMP2 parts (Figure 16). As input, we use a road network,
trajectory points, and the speed and direction data of each trajectory point.

6.1.1 Initial Map Matching Process (IMP)

The purpose of the initial map matching process (IMP) is to specify the first matching. The IMP takes
the following steps:

1. Identify a set of candidate edges.

2. Assign a weight to each candidate edge using AHP based on distance and direction data.

3. Take the highest weight edge as the correct edge for that point.
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Input

Initial Map Matching Process (IMP)

Subsequent Map Matching Process
along a Link (SMP1)

The correct edge is the
previously matched edge

Subsequent Map Matching Process
at a Junction (SMP2)

TrueFalse

Figure 15: The flowchart of AHP map matching algorithm

Choose the correct edge

DirectionDistance Turn restriction

Candidate edge 1 · · · Candidate edge n

Figure 16: AHP layer
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Table 1: The pairwise comparison matrix for distance. di := dist(pt, di)

αij range

1 0 ≤ dj − di ≤ 1
2 1 < dj − di ≤ 3
3 3 < dj − di ≤ 5
4 5 < dj − di ≤ 7
5 7 < dj − di ≤ 9
6 9 < dj − di ≤ 11
7 11 < dj − di ≤ 13
8 13 < dj − di ≤ 15
9 15 < dj − di

1/αji dj − di < 0

Table 2: The pairwise comparison matrix for direction. θi is the angle difference between the direction of pt
and the direction of ei

βij range

1 0 ≤ θj − θi ≤ 10
2 10 < θj − θi ≤ 30
3 30 < θj − θi ≤ 50
4 50 < θj − θi ≤ 70
5 70 < θj − θi ≤ 90
6 90 < θj − θi ≤ 110
7 110 < θj − θi ≤ 130
8 130 < θj − θi ≤ 150
9 150 < θj − θi

1/βji θj − θi < 0

In the first stage, we check whether the speed of the vehicle at the first point p0 is less than 3m/s or not.
If yes, we skip the analysis of p0 and run IMP for the next point p1. This is because if the vehicle speed
is less than 3m/s, the GPS data is less reliable [Tay+01; OQN03]. We continue this speed check until the
first point where the speed is more than 3m/s is obtained. Once such a point, say pt, is obtained, next we
draw the error polygon and take edges that intersect or are contained in this polygon as candidate edges.
So candidate edges are the edges that have the possibility of matching pt. Let e1, . . . , en be the candidate
edges. After identifying the candidate edge, we define a weight for each candidate edge using AHP. A weight
is given based on distance data and direction data of each candidate edge. To do this, we first consider
weights wdist

1 , . . . , wdist
n for distance. To begin we construct the pairwise comparison matrix Mdist = [αij ] for

distance. Each (i, j)-component of Mdist is defined by Table 1. Here, the distance dist(p, e) between a point
p and an edge e is defined by

dist(p, e) := sup
x∈e

d(p, x),

where d(p, x) is the usual euclidean distance between two points (Figure 17). Then we take the geometric
mean gi of each row and let S = g1 + · · · + gn. Finally the weight wdist

i for distance of the candidate edge
ei is determined by ei = gi/S. We repeat the same procedure to obtain weights wdir

1 , . . . , wdir
n for distance

using the hierarchical classification of Table 2. Now each candidate edge has two weights: one for distance
and another for direction. Finally the total weight TW(ei) for ei is defined by

TW(ei) := cdistwdist
i + cdirwdir

i ,

where cdist and cdir are the coefficients that reflect the relative importance of the factors. These values
are provided by [VQB12] and given by Table 3, which vary depending on the map environment (see also
subsection 6.1.4). After these processes we select the highest weight edge as the correct edge for pt.
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e e
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p p

Figure 17: Distance dist(p, e) between a point and an edge

Table 3: Relative importance

urban suburban rural

cdist 0.0806 0.4376 0.5563
cdir 0.3715 0.4642 0.4237
cturn 0.5479 0.0982 0.020

6.1.2 Subsequent Map Matching Process along a Link (SMP1)

After each matching, we always run the subsequent map matching process along a link (SMP1) for the
next trajectory point. In SMP1 we verify whether the next point matches the previously selected edge. Let pt
be the current point, e be the previously selected edge for the previous point pt−1, and qi−1 be the projection
point of pt−1 onto e. At first, if the speed of pt is zero, then we automatically conclude that pt matches e.
In other cases, we use two factors to determine this:

1. How far pt is from the next junction point.

2. How small the angle difference between the direction of pt and that of pt−1 is.

For the first part, we set d1 as the distance between qi−1 and the next junction point and d2 as the product
of the speed of pt−1 and time interval between pt−1 and pt. We then define ∆d := d1 − d2. For the second
part, we calculate ∆h as the angle difference between the direction of pt and that of pt−1. If both conditions
∆d > 30 and ∆h < 5 are satisfied, then we conclude that pt still matches the previously selected edge.
Otherwise, we proceed to the subsequent map matching process at a junction.

6.1.3 Subsequent Map Matching Process at a Junction (SMP2)

The subsequent map matching process at a junction (SMP2) is executed only for the point that does not
meet the SMP1. SMP2 takes a similar process as IMP, which is:

1. Identify a set of candidate edges.

2. Assign a weight to each candidate edge using AHP based on distance, direction, and turn restriction
data.

3. Take the highest weight edge as the correct edge for that point.

Let pt be the current point. The first part is exactly the same as the one in IMP and we assume that
e1, . . . , en are candidate edges. In the second part, similar processes used in IMP are also employed except
that we use a new factor, which is turn restriction data, in addition to distance and direction data. So the
method for obtaining the weights for distance and direction is the same as for the IMP. The turn restriction
data reflects if the vehicle on the previously selected edge can legally turn onto each candidate edge, that
is if each candidate edge is connected to the previously selected edge and is not the wrong way down a
one-way street. The pairwise comparison matrix Mturn = [γij ] for turn restriction is defined by Table 4, and
weights wturn

1 , . . . , wturn
n for turn restriction are obtained the same way as the other two weights. At this

stage, each candidate edge has three weights: one for distance, another for direction, and the third one for
turn restriction. Then the total weight TW(ei) for ei is defined by

TW(ei) := cdistwdist
i + cdirwdir

i + cturnwturn
i ,

where the coefficients cdist, cdir, and cturn are given by Table 3. Finally, the highest weight edge is selected
as the correct edge for pt.
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Table 4: The pairwise comparison matrix for turn restriction

γij range

1 If the vehicle can (or cannot) legally turn onto both ei and ej
9 If the vehicle can legally turn onto ei and cannot turn onto ej
1/9 If the vehicle can legally turn onto ej and cannot turn onto ei

6.1.4 Map Environment

In IMP and SMP2, we have to specify the map environment for each trajectory point to determine which
coefficient value should be used. As [VQB12] reported, the importance of each factor depends on the map
environment. We determine the map environment for each trajectory point individually rather than for
the entire road network because some road networks may have multiple features, such as a combination of
urban and suburban areas. The calculation for finding the map environment is based on [VQB12]. First
we draw the circle of radius 200 centered at the current point pt. Next we count the number N of junction
points within this area and calculate the total length L (km) of roads within this area. Then the ratio N/L
is used for determining the map environment. If the ratio is greater than 6.81 we conclude that the map
environment around pt is urban, if the ratio is smaller than 2.88, then the map environment is assumed to
be rural. Otherwise, the map environment is considered suburban.

6.2 Fuzzy Logic Map Matching Algorithm

A Fuzzy-logic Map Matching algorithm utilizes Fuzzy Inference System to make a decision. Three different
Fuzzy Inference System (FIS) is implemented for IMP, SMP 1, and SMP 2. Quddus [QON07] proposes using
Takagi-Sugeno-Kang that averages out the rule outputs

Z =
ΣN

i=1ωiZi

ΣN
i=1ωi

Where ωi is the rule strength calculated from the fuzzy rules and Zi is a defuzzifcation function. Since the
output of this FIS is the likelihood of matching the position fix to the candidate link. The constants used to
calculate the output are 10 when output is low, 50 when output is average and 100 when output is high.

We also introduces a set of weight ai, that represents on how confident we are about the output result
produced by the ith rule,where

∑n
i=1 ai = 1. Our new proposed rule aggregation is :

Z∗ =
ΣN

i=1ωiaiZi

ΣN
i=1ai ∗ ωi

We will discuss more about the reasoning to include this new weight in section 8.4

6.2.1 Initial Map Matching Process (IMP)

The Initial Map Matching starts by identifying all possible candidate links inside an elliptical error
confidence region around position fix (GPS location) based on some error model. FIS is then calculated for
all the candidate link and link with the highest FIS score is then selected. IMP processed is then repeated
until the matched link is picked for three consecutive position fix. Quddus [QNO06] proposed using four
input variables in the IMP step, which includes : 1) Speed of the vehicle, 2) Heading error, 3) perpendicular
distance and 4) contribution of satellite geometry to the positioning error, which represented by the horizontal
dilution of precision (HDOP). Since KCMMN data set doesn’t have a HDOP value, therefore we decided not
utilize HDOP as one of our input. Sigmoidal Membership function is chosen in the fuzzification. We then
modified the fuzzy rules in order to accommodate our selection of input. We proposes these following rules
to calculate fuzzy output in this FIS :
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Figure 18: Four candidate link (1, 2, 3, 4) is detected in the error region. Heading error is defined as the
difference between θ and θ’

.

1. if speed is high and heading error is small then output is average.

2. if speed is high and heading error is small then output is low.

3. if perpendicular distance is short and speed is high then output is high.

4. if perpendicular distance is long and speed is low then output is low.

5. if perpendicular distance is short and heading error is small then output is high.

6. if perpendicular distance is long and heading error is large then output is low.

The FIS is applied to all links within the confidence region and the link which gives the highest likelihood
is taken as the correct link among the candidate link. Since the link for the first position fix may not be the
actual link, IMP step can be performed to a few first position fix. If the FIS identifies the same link for those
position fixes then the link is chosen as a first correct link.

6.2.2 Subsequent Map Matching Process along a Link (SMP1)

Once the Initial link is chosen, SMP 1 are deployed to track whether the next position fix is still travelling
through the current selected link. The input for the FIS are the speed of the vehicle, Heading Increment
(|θ − θ′|), α and β and ∆d = d − d2, where d2 speed of the previous position fixed multiplied by the time
difference. In this Implementation we followed the rules proposed by Gorte [GPS14] :

Figure 19: diagram of input in SMP 1 system

1. If α and β is below 90o then output is high.

2. If ∆d is positive and α is above 90o then output is low.
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3. If ∆d is positive and β is above 90o then output is low.

4. If heading increment is small and α and β is below 90o then output is high.

5. If heading increment is small and ∆d is positive and α above 90o then output is low.

6. If heading increment is small and ∆d is positive and β above 90o then output is low.

7. If heading increment is large and α and β is below 90o then output is low.

8. If speed is zero then output is high.

9. If ∆d is negative then output is average.

10. If ∆d is positive then output is low.

11. If speed is high and heading increase is small then output is average.

12. If speed is high and heading increase is 180 then output is high.

FIS score above 60 indicates that the current position fix is still travelling in the previous selected
link [QNO06].

6.2.3 Subsequent Map Matching Process at a Junction (SMP2)

When the FIS score obtained from SMP 1 step is less than 60, this indicates that the vehicle is entering
a junction and SMP 2 is used to determine which link should be selected for the current position fix. SMP 2
algorithm is similar to IMP algorithm , but with two additional input and four additional rules [GPS14]. The
two additional input are : 1) the link connectivity (1 when previous link are connected to candidate link, 0
otherwise) 2) distance error, which is defined as the difference between distance travelled by the vehicle and
the shortest path travelled through road network(see 20).

Figure 20: AB is the distance travelled two position fix and MO + ON is the shortest path travelled for
candidate link 4

.

The 4 additional rules that incorporated the connectivity and distance error are:

• If connectivity is low then output is low.

• If connectivity is high then output is high.

• If distance error is low then output is low.

• If distance error is high then output is high.

Similar to the IMP process candidate link with the highest FIS score is selected as the new matched link.
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7 Implementation

We implemented AHP and Fuzzy Map matching algorithm using geopanda and Osmnx libraries in
python.to evaluate their performance numerically. The code written for the project can be found at :
https://github.com/walkre-niboshi/G-RIPS-2023-Mitsubishi-A. For both the AHP and Fuzzy, an
error polygon, rather than an ellipsoid, is constructed in order to simplify our calculations. KCMMN dataset
is used to test the performance of our algorithm. We use the following method proposed by Newson and
Krumm [NK09] :

Err =
d− + d+

d0
,

where d0 is the length of the correct route, d− is the length of the prediction erroneously subtracted from the
correct route, and d+ is the length of the prediction erroneously added outside the correct route. See figure
21.

Ground Truth

Prediction

d0

d−

d+

Err =
d−+d+

d0

d0 = length of ground truth

d− = length of prediction route erroneously subtracted

d+ = length of prediction route erroneously added

Figure 21: Error Formula by Newson and Krumm

A lower value indicates that our algorithm perform really well in matching trajectory points to a map,
while a higher value indicates that our algorithms perform poorly. Both AHP and Fuzzy logic map matching
algorithm is tested in 20 trajectories. We then compare our methods to Fast Map Matching (FMM) framework
[YG18], which is based on hidden Markov model.

8 Results

8.1 DA-LEAF: Dijkstra’s Algorithm with Learnable Edge Affinity Function

8.1.1 Training & Testing

Our model has a very high overall training accuracy of about 93%, wherein 85% of ground truth edges were
correctly identified (when thresholding the output probability at .5 to obtain these scores). The unnormalized
edge projection models have a lower testing accuracy of 86% at the best, but only correctly identify about 10%
of ground truth edges. This could be suggestive of three things: 1. that our model is drastically overfitting, 2.
the testing data’s distribution does not match that of the training data, or 3. the output testing probabilities
require a lower threshold than .5.

As the trajectories are around the globe, the accuracy/distortion is subject to some variation under
projection to the OpenStreetMaps meter grid, as well as possible variations in GPS sampling frequency.
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These considerations could suggest that the distribution of the testing data is non-identical to the training
data, and that more trajectories are needed for global training (KCMMN only has 100 trajectories total).
This coincides somewhat with the ”No Free Lunch Theorem,” i.e. there is no model that can perform well
on all possible distributions.

The other (non-exclusive) possibility is overfitting. We have done numerous trials in cutting the number
of parameters in the model, but each such cut has yielded lower training and testing accuracy. It is not yet
clear what part of the model can/should be cut. Further experiments with dropout, batch normalization,
and gradient clipping should be done in future work.

8.1.2 Map Predictions

Here we include visualizations of the output model probabilities. In this section, the blue line (or points,
when zoomed in) denotes the GPS points, which can be regarded as the ground truth route for most of
this section. The colored lines are the map grid color coded by the edge affinity model: increasing from red
(low), green, cyan, blue, to purple (high). While the probabilities take values in [0, 1], we have yet to find an
efficient plotting implementation in Python that shows the probabilities as a continuous heatmap and allows
trajectory point overlays - time is, again, a limiting factor. For evaluation, green and red should be regarded
as negative predictions (green a little less confident); cyan, blue, and purple should be regarded as positive
predictions (i.e. in the trajectory, with purple the most certain).

Figures 22 to 25 show the results on a trajectory in the training dataset. A close inspection of Figures 22
shows a purple line coinciding with the central GPS points - the model has correctly identified the ground
truth here, but there’s also relatively little around. Figure 24 shows a close up of the region where the model
does quite well, although an offshooting road also has a quite high output probability. Figures 23 and 25
reveal the model fares far worse in dense urban areas, with only a small bit of purple towards the end of the
trajectory in 23 and the rather clean cut 25 completely missed.

As for testing, Figures 26 and 27 reveal a far lower spectrum of output values, with very little high
predictions, but more green toward the ground truth trajectory than in most other places.

Figure 22: Training results: overall, good.
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Figure 23: Training results in dense urban area: not so good.

Figure 24: Training results: good.
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Figure 25: Training results: bad.

Figure 26: Testing results.
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Figure 27: Testing results.

8.1.3 Use with Dijkstra’s Algorithm: DA-LEAF

Despite the poor testing accuracy with thresholding, we elected to try the model with Dijkstra’s algorithm
as discussed in section 5.3 as it was only a few lines of code more. To our delight, the model performs really
quite well, even on testing data. This suggests a lower output probability threshold can and should be used.
As time is presently a limiting factor, we cannot produce hard metrics of the algorithm’s accuracy at this
moment, but we include some of the resulting plots. The model evaluation and Dijkstra’s algorithm between
the two nodes is quite fast, completing in well under a minute. The computational bottleneck is, at present,
constructing the reverse K-NN edge to point adjacency, which still only takes a few minutes, but there is
lots of room for improvement here using more sophisticated search methods, such as K-D trees, depth first
searches, spatial queries, and other means.

We now present the output trajectory predictions from Dijkstra’s algorithm when using our learned edge
affinity function (i.e. DA-LEAF). Here, the orange points denote the predicted path colored at the map
nodes; the blue is the raw GPS trajectory, and everything else is as in the previous section. Apologies that
the plots are a bit hard to see, but again, time is a limiting factor.

Figures 28 to 30 show results on a trajectory in the training set. Overall the algorithm identifies the
correct route, but notably Figure 29 shows a departure from the ground truth in the dense urban area. This
suggests that there is certainly room for improvement in the model’s performance, especially in urban areas.
It seems empirically that KCMMN consists largely of longer country drives, with less data representation in
urban areas. Mitigating this issue and procuring more urban data should be of quintessential interest for
further work, as the trajectory identification is somewhat more trivial in rural areas.

Figures 31 to 35 show the testing results of the algorithm, which appear to be better than the training
results. Despite the poor testing accuracy of the thresholded model, DA-LEAF identifies most of the correct
route here. Even when the GPS trajectory appears to traverse a non-existent road, the model correctly
identifies the ”ground truth” path (Figure 35). This would seem to have strong applications in map completion
and/or detection of an incomplete route or identification of new routes, which is of tremendous interest to
industry research at large. This certainly merits further investigation and development.
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Figure 28: DA-LEAF training results.

Figure 29: DA-LEAF training results.
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Figure 30: DA-LEAF training results.

Figure 31: DA-LEAF testing results.
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Figure 32: DA-LEAF testing results: the model does quite well with the zig-zag here and various bizzare
intersections. Note the road in the lower corner resembles the silhouette of a face.

Figure 33: DA-LEAF testing results: the model is completely correct here, even upon entry into the urban
area.
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Figure 34: DA-LEAF testing results: the model is almost completely correct here, apart from one snafu
within the relatively dense urban area.

Figure 35: DA-LEAF testing results: the model makes a small mistake here and skips over convex loop in
the middle right of this figure. Otherwise, the trajectory is mostly correct.
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8.2 Performance evaluation

Figure 36: Performance of FMM

Figure 37: Performance of AHP map matching Figure 38: Performance of fuzzy logic map matching

From the result shown in Figure 36, 37, and 38, we observe that our methods perform relatively well with
19 and 20 percent error for AHP and Fuzzy logic, respectively. However both of our methods still were not
able to beat FMM, which we believe due to two following reasons: data availability and parameter tuning.
We used KCMMN data set to test the performance of our method because this data set included ground
truth, however KCMMN data set only has the GPS position and time, while both our methodologies require
other inputs such as speed and direction data. To circumvent this problem, we estimated both speed and
direction using the location data. We believe that this estimation causes our method to perform poorly on
some trajectories that have more noisy measurements. Due to time limitations, we were not able to optimize
the parameter that are needed for our map matching algorithm. We believe that our algorithm will be able
to perform significantly better if we were able to address these problems.

8.3 AHP Map Matching Results

One of the results of AHP map matching algorithm is shown in Figure 39. The yellow line represents the
true traveling route, the black line represents the matching result, and the red points behind the two lines
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represent trajectory points. Except for the big mismatch in the middle left of the figure, the entire outline
looks satisfactory. However if we zoom in on local areas we can find some mismatching such as branches
(Figure 40) and jumps (Figure 41). These mismatching are more likely to occur near junctions and around
points where there are many curves.

The algorithm has both advantages and disadvantages. First, It is simple and easy to understand, which
helps us with the implementation. In terms of speed it is comparable to other existing algorithms and we
believe that the execution speed could be much higher through the use of other programming languages and
parallelization techniques. Furthermore, the accuracy is not so bad, at least it provides results that allow us
to grasp the overall outline.

As for the disadvantages, it is very sensitive to measurement errors since we use only two or three factors
in each step. If any of these data is inaccurate, it could directly affect the outcomes and result in bad
mismatching. Also there is a large variation in accuracy depending on the trajectory data. When the
trajectory points are placed linearly, the algorithm tends to work well but when the trajectory points are
curved, mismatching are more likely to occur.

To improve the algorithm, we need to find a way to deal with those mismatching. But we believe it would
be challenging to avoid mismatching solely with our algorithm. Therefore, implementing post-processing will
be necessary, which is explained in Appendix 9.2.

Figure 39: The result of AHP map matching

Figure 40: Some branches Figure 41: Some jumps
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8.4 Fuzzy Logic Map Matching Results

Figure 42: Fuzzy logic map matching process in KCMMN data set

Figure 42 shows an example of using fuzzy logic map matching. The yellow line represents the ground
truth and the black line represents the road selected by our algorithm. Similar to AHP, Fuzzy logic Map
Matching also suffers to branches and jump that occurs due to selecting incorrect link.

We introduces a rule weight ai to indicate how confident we are with a certain rules. For example in our
KCMMN implementation, since we know that speed and velocity are estimated rather than measured, we can
put higher weight on connectivity and perpendicular distance and less on speed and velocity. Figure 43 shows
the results of Fuzzy logic map matching before we implemented the rule weight. Blue line represents the GPS
trajectory data, black line represents which link is selected and green point represent where the trajectory
point is matched to the selected link. We observe that on some of the trajectory points are matched to the
wrong link that caused the branches to occurs. Figure 44 shows the results after we implemented the rule
weight in our FIS system, her we observe that the trajectory is matched correctly even in the complicated
junctions.

During our implementation of fuzzy logic map matching, we notice that although this method performs
as well as other methods, it is less sensitive to error when some subsets of the input is miss-specified. Fuzzy
logic map matching error rate increase by 10 percentage point when the direction was incorrectly specified,
which is relatively lower than our other method that differ by 60 percentage point.

One disadvantage of Fuzzy Logic map matching is that the computational time is relatively slower than
both FMM and AHP method. One possible solution is to implement this algorithm in C manually in order
to accelerate the computing time.
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Figure 43: Before
Figure 44: After

9 Appendix

9.1 Preprocessing by DBSCAN

In this subsection, we talk about stay point mitigation and outlier detection by DBSCAN, and a method
to automatically determine a parameter of the algorithm.

DBSCAN is a clustering algorithm based on metric information. The algorithm has two parameters:
minPts and eps. Then the algorithm takes a set of points in space as its input and classifies them into
three categories: core points, reachable points, and unreachable points. Among these classes, core points
and reachable points belong to a cluster, meanwhile, unreachable points do not belong to any cluster. The
minPts parameter is the density threshold for a point to become a core point, and the eps parameter is
the search radius for each point. In [Jaf22], they used DBSCAN to detect and mitigate stay points by
replacing each cluster with a single point. Here, inspired by their method, we propose to utilize DBSCAN to
detect outliers simply by labeling the unreachable points of DBSCAN as outliers. Since many map matching
algorithms depend on the number of trajectory points for their computation time, conducting DBSCAN as
preprocessing would speed up those algorithms.

Although these methods of stay point mitigation and outlier detection are simple, the choice of the
parameters of the algorithm is critical when actually conducting the algorithm as preprocessing of the map
matching algorithm. If the eps parameter is too small, too many points may be classified as unreachable
points. On the other hand, if the eps parameter is too large, an undesirably large portion of points may
be grouped into a single cluster. As for the minPts parameter, in [San+98] they suggested setting it to
2 × d, where d is the dimension of the space. As for the eps parameter, though such a simple way to
determine the value is not known unlike minPts, the following heuristic based on ”elbows” is said to be a
good way [Est+96]:

1. Prepare an empty list l;

2. For each point in the input set, compute the distance between the point and the minPts-th closest
point from it, and put it into l;

3. Sort l in ascending order;

4. Plot the set {(i, l[i]) : 0 ≤ i < len(l)} in a plane;

5. Consider a curve that interpolates the plotted points;

6. The elbows, where the curve rapidly goes up, are considered to be good candidates for the eps param-
eter.

35



Page 36 of 38 g-RIPS Sendai 2023, MITSUBISHI-A Group

Algorithm 2: Elbow Detection Algorithm

Input: List l of the minPts-distances, degree θ, integer d
Output: Set of real numbers

1 Set points = {{(i, l[i]) : 0 ≤ i < len(l)}}; Rotate points −θ degree around the origin;
2 Compute the least square polynomial fit of degree d of the rotated points;
3 Find the local minimals m of the fitting polynomial;
4 Rotate m θ degree around the origin;
5 Extract points whose x-coordinate is in [0, len(l)) from m, and return their x-coordinates as the

output;

When one tries this heuristic, it poses a problem how to determine the interpolation curve and elbows.
To deal with this problem, we propose an elbow detection algorithm in Algorithm 2.
Although this algorithm works well for GPS trajectory points as far as we manually checked with our

eyes, it is desired that it is verified in various different tasks. Also, because we tested only the least square
polynomial fit as the smooth curve which interpolates the points in this research project, it may be possible
that other methods are superior to it. Therefore, it remains as tasks that should be examined in the future
to develop a method to find proper values for θ and d, and to test other methods of the interpolation curve.

9.2 Postprocessing

As we have seen in the sections of the AHP and fuzzy-logic map matching algorithms, to achieve greater
accuracy, it is necessary to deal with many ”jumps” and ”branches” that the route predicted by these
algorithms includes. We suggest after the map matching algorithm applying postprocessing to the predicted
route so as to interpolate the jumps and remove the branches. Specifically, we propose the following procedure:

1. Find the shortest path from the start point to the end point of the predicted route;

2. Subtract the edges in the shortest path from the set of the edges in the predicted route by the map
matching algorithm;

3. Remove all connected components of the shape of a linear graph.

The reason why the removed connected components have to be linear graphs in step 3 is that the correct
route may have some loops in it, and thus, we do not want to mistakenly remove them.
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