g-RIPS 2023 Fujitsu Group

Design and Development of Explainable AI with Wide Learning

Group Members:

Lily Ge (Northwestern University) Yuki Kimura (Musashino University) Takeshi Nakashima (Musashino University) Molly Noel (Rensselaer Polytechnic Institute) Academic Mentor: Jesica Bauer (Rensselaer Polytechnic Institute)

Industry Mentor: Dr. Hiroyuki Higuchi (Fujitsu Limited)

Outline

- Motivation
 - What is Explainable AI?
 - Explainability Approaches
- Wide Learning
- Our Approach
 - User selection LASSO
 - Model selection
 - Rademacher complexity
 - result
 - Interface Specification and Development
 - result
 - Pilot Survey for New Interface
 result
- Conclusion

What is Explainable AI?

Modern Model

- Many modern AI predictions are based on black-box models/systems and lack explanatory power and conviction.
- This lack has a significant impact on industries such as finance and medicine, which are driven by trust.

Explanation Approaches

Miller, Tim. "Explainable ai is dead, long live explainable ai! hypothesis-driven decision support." arXiv preprint arXiv:2302.12389 (2023).

"Hello, Wide Learning!" by Fujitsu Limited

- Wide Learning is a form of the hypothesis-driven approach
- We aim to enhance it and develop a more hypothesis-driven Explainable AI (XAI) tool

C	Combination of important items			
0	viparous_No			
Sized about the same as a cat?_Yes				
Breathes using lungs_Yes ∧ Fins_Has				
W	/ings_Does not have ∧ Eats meat_No ∧ Spine_Has			
Te	eeth_Has \land Breathes using lungs_Yes			
FI	lies_Does not ∧ Aquatic_No			

How Can We Improve Wide Learning?

Pilot Survey

- Open-ended questions to elicit people's thoughts on the existing Wide Learning tool
- Anonymized and expected to take approximately 15 minutes to complete
- Distributed through the **#students-grips2023** Slack channel and received 10 responses
- Survey responses informed how we built the new user interface

Existing Interface of "Hello, Wide Learning!"

- 1. Upload training data
- 2. Get important feature combinations generated by Wide Learning
- 3. Assign weights to the combinations

Testing

- 4. Upload testing data
- 5. Make predictions for testing data

- Wide Learning efficiently identifies important feature combinations at Step 2
- Weights are assigned to these important combinations in Step 3 and are used to make predictions in Step 5
- We focus on making improvements to Steps 3-5, by addressing areas of confusion from the survey responses and incorporating hypothesis-driven learning

Improvement 1: Feature Selection in LASSO

Logistic Lasso

- Logistic regression with L1 regularizer to assign weights to combinations from Step 2
- Lasso performs feature selection → some combinations are assigned weight 0
- Optimal weights are selected by solving the following problem:

 $\beta^* = \underset{\beta}{\arg\min} \mathcal{L}(\beta) := f(\hat{y}, y) + \rho \|\beta\|_1$ $y_i \in \{0, 1\}, \text{ class label}$ $\hat{y}_i \in (0, 1), \text{ prediction based on } \beta$

User Input

• In Wide Learning and the other models considered, important feature combinations are selected by the model

• We include user selection of important combinations in our Lasso model to increase trustworthiness based on this paper:

<u>Satoshi Hara and Takanori Maehara. Finding alternate features in lasso. arXiv preprint</u> <u>arXiv:1611.05940, 2016.</u>

User Input

- Lasso selects important feature combinations by assigning them a nonzero weight
- Feature combinations not included in the model are assigned weight zero
- User can select a feature combination with a zero weight to include in the model
- The optimal nonzero weight for this combination is found
- A feature combination included in the original model is assigned a zero weight to keep the same number of nonzero weights

Finding Alternate Weights

Given the Lasso optimal solution β^* , we seek for whether there are any alternate feature x_j with $\beta_j^* = 0$ that can be replaced with a feature x_i selected by the Lasso (i.e., $\beta_i^* \neq 0$). We solve this problem by optimizing β_j in (1) while fixing as $\beta_i = 0$ and $\beta_k = \beta_k^*$ ($k \neq i, j$). The optimization problem can be expressed as

$$\beta_j^{(i)} = \operatorname*{argmin}_{\beta_j} f(z^{(i)} + X_j \beta_j, y) + \rho |\beta_j|, \tag{2}$$

where X_j denotes the *j*-th column of X and $z^{(i)} = \sum_{k \neq i} X_k \beta_k^*$. If $\beta_j^{(i)} \neq 0$, the feature x_j can be an alternative of x_i . We note that the problem (2) is a univariate optimization problem, and can be solved easily, e.g., by using the proximal gradient method [5].

- Red betas are included in the model (nonzero), blue betas are not included in the model (zero)
- This example shows replacing feature combinations 2 and 3 with feature combination 1

$$\beta^{*} = \begin{bmatrix} \beta_{1}^{*} = 0\\ \beta_{2}^{*} \neq 0\\ \beta_{3}^{*} \neq 0\\ \beta_{4}^{*} = 0 \end{bmatrix} \qquad \beta^{(2 \to 1)} = \begin{bmatrix} \beta_{1}^{(2 \to 1)} = \beta_{1}^{(2)}\\ \beta_{2}^{(2 \to 1)} = 0\\ \beta_{3}^{(2 \to 1)} = \beta_{3}^{*}\\ \beta_{4}^{(2 \to 1)} = \beta_{4}^{*} \end{bmatrix} \qquad \beta^{(3 \to 1)} = \begin{bmatrix} \beta_{1}^{(3 \to 1)} = \beta_{1}^{(3)}\\ \beta_{2}^{(3 \to 1)} = \beta_{2}^{*}\\ \beta_{3}^{(3 \to 1)} = 0\\ \beta_{4}^{(3 \to 1)} = 0\\ \beta_{4}^{(3 \to 1)} = \beta_{4}^{*} \end{bmatrix}$$
$$\mathcal{L}(\beta^{(k)}) \qquad \mathcal{L}(\beta^{(k)})$$

- Example with four important feature combinations
- Optimal betas from Lasso

$$\boldsymbol{\beta^*} = \begin{bmatrix} \beta_1^* = 0\\ \beta_2^* \neq 0\\ \beta_3^* \neq 0\\ \beta_4^* = 0 \end{bmatrix}$$

• β_2 and β_3 have nonzero weights, so they are included in the model

$$\boldsymbol{\beta^{*}} = \begin{bmatrix} \beta_{1}^{*} = 0 \\ \beta_{2}^{*} \neq 0 \\ \beta_{3}^{*} \neq 0 \\ \beta_{4}^{*} = 0 \end{bmatrix}$$

• β_1 and β_4 have weights of 0, so they are not included in the model

$$B^* = \begin{bmatrix} \beta_1^* = 0 \\ \beta_2^* \neq 0 \\ \beta_3^* \neq 0 \\ \beta_4^* = 0 \end{bmatrix}$$

- Say the user wants to make sure β_1 is included in the model
- Need to find a new optimal nonzero β_1

$$\boldsymbol{\beta^*} = \begin{bmatrix} \beta_1^* = 0 \\ \beta_2^* \neq 0 \\ \beta_3^* \neq 0 \\ \beta_4^* = 0 \end{bmatrix}$$

Option 1 - Replace β_1 with β_2

• Find new optimal value of β_1

$$\beta^{(2\to1)} = \begin{bmatrix} \beta_1^{(2)} \\ 0 \\ \beta_3^* \\ \beta_4^* \end{bmatrix}$$

Option 1 - Replace β_1 with β_2

- Find new optimal value of β_1
- Set β_2 to 0

$$\boldsymbol{\beta^{(2\to1)}} = \begin{bmatrix} \beta_1^{(2)} \\ 0 \\ \beta_3^* \\ \beta_4^* \end{bmatrix}$$

Option 1 - Replace β_1 with β_2

- Find new optimal value of β_1
- Set β_2 to 0
- Keep β_3 and β_4 the same

$$\boldsymbol{\beta^{(2\to1)}} = \begin{bmatrix} \beta_1^{(2)} \\ 0 \\ \beta_3^* \\ \beta_4^* \end{bmatrix}$$

Option 2 - Replace β_1 with β_3

- Find new optimal value of β_1
- Set β_3 to 0
- Keep β_2 and β_4 the same

$$\beta^{(3\to1)} = \begin{bmatrix} \beta_1^{(3)} \\ \beta_2^* \\ 0 \\ \beta_4^* \end{bmatrix}$$

Choosing the Best New Solution

• Compare the objective values of the new solutions to the original β^{\ast}

 $eta^* = \operatorname*{arg\,min}_{eta} \mathcal{L}(eta) := f(\hat{y}, y) +
ho \|eta\|_1$ $y_i \in \{0, 1\}, \text{ class label}$ $\hat{y_i} \in (0, 1), \text{ prediction based on } eta$

$$\mathcal{L}(\beta^*)$$
 $\mathcal{L}(\beta^{(2 \to 1)})$ $\mathcal{L}(\beta^{(3 \to 1)})$

Improvement 2: More Result Options

Additional Models to Select

We can improve the convincingness of our model results by providing other models to compare, such as:

- Logistic regression
- Perceptron
- Decision Trees
- Random Forest
- Support Vector Machines (SVM)
- Gaussian Naive Bayes

Reasons for selecting six models

Hello Wide Learning targets binary classification problems.

• Six models are well-known methods in the field of classification.

• Six models can be executed using sklearn.

Logistic Regression

- A statistical model primarily used for binary classification
- it calculates using a linear prediction model
- The analysis is performed by passing the values through a sigmoid function

 $y = \sum_{i=1}^{n} w_i x_i + b \ (i = 1, 2, ..., n) : \text{ linear prediction model}$ $\sigma(y) = \frac{1}{1 + \exp(-u)} : \text{ sigmoid function}$

Perceptron

- A simple linear classification algorithm
- calculates the weighted sum of input data features and classifies them into two categories

Decision Tree

- An analysis that creates a tree diagram from data
- Classifies data based on "yes" or "no" information

Random Forest

- Combines the outputs of multiple decision trees to produce a single result
- Allows for highly accurate predictions by obtaining majority voting

Support Vector Machine (SVM)

- Well-known algorithm in machine learning
- High generalizability with a small amount of supervised data

Gaussian Naive Bayes

- Machine learning algorithm used for binary classification problems
- Assume that the characteristics of each class follow a Gaussian distribution
- Predicting new classes of data based on calculated probabilities by learning the mean and variance of each class from training data

One of our approach

- Add "model selection"
 - we thought that this proposal would solve the "variety" problem required by Fujitsu.

Furthermore, we added the complexity of the model.
 Improving the interpretability of the models

Improvement 3: Explaining the Models and Calculating Complexity

Simple = Better? → Rademacher Complexity

- Rademacher complexity is a measure that quantifies the complexity of a function set.
- Rademacher complexity can be measured for most predictive models such as Lasso, decision trees, and SVM.
- Our goal is to use Rademacher complexity to find models that are not complex. Simple = Better!

$$\hat{\mathfrak{R}}_S(\mathcal{G}) = \mathbb{E}_\sigma \left[\sup_{g \in \mathcal{G}} rac{1}{n} \sum_{i=1}^n \sigma_i g(x_i)
ight] \quad S = \{x_1, \cdots, x_n\} \in \mathcal{X}$$

	feature_1	feature_2	feature_3	feature_4
Name1	1	-1	1	-1
Name2	1	1	-1	1
Name3	1	-1	1	-1
Name4	-1	1	1	1

	feature_1	feature_2	feature_3	feature_4
Name1	1	-1	1	-1
Name2	1	1	-1	1
Name3	1	-1	1	-1
Name4	-1	1	1	1

New dataset with randomly re-labelled labels and original feature matrix

Set of Untrained Models

Make a Set of Trained Models

Let the random labels be the vector σ , the feature matrix of the model be the matrix X, and the number of rows be n.

	Random Label	Model_1	Model_2	Model_3	Model_4	$\sigma^{T} X$					
Г	1	1	1	1	-1	n		T			1
	1	1	1	1	1		Model_1	Model_2	Model_3	Model_4	
	1	1	-1	1	1		1	0.5	1	0.5	
	-1	-1	-1	-1	-1			1		1	4

n

Calculate the product of σ and X to determine the percentage of random labels that could be predicted.

	Model_1	Model_2	Model_3	Model_4	
σ ⁽¹⁾	1	0.5	1	0.5	
σ ⁽²⁾	0.5	0.5	0.5	0	-
σ ⁽³⁾	1	1	1	0.5	
O ⁽⁴⁾	0.5	0	-0.5	1	

0.65

Rademacher

0.72

average

0.32

0.44

Generate a random label σ many times and average a series of calculations.

. . . .

.

It is called the empirical Rademacher complexity.

 By measuring the ability to learn to random labels, the potential complexity of the model could have been measured.

• However, we felt the need to evaluate the model in more detail and prepared a new metric.

Our metric shows how well the model predicts as the randomness of the labels increases.

This allows us to examine how much more random the model becomes less predictable.

Random	Model_1	Model_2	Model_3	Model_4						
Label 1	1	1	1	-1	$\mathbf{y}_1^{T} \mathbf{X}_1$		Model_1	Model_2	Model_3	Model_4
1	1	1	1	1						
1	1	-1	1	1	n		1	0.5	1	0.5
-1	-1	-1	-1	-1		l				
	_									
Random Label	Model_1	Model_2	Model_3	Model_4						
1	1	1	1	-1	$\mathbf{y}_{2}^{T}\mathbf{X}_{2}$		Model_1	Model 2	Model 3	Model 4
1	1	1	1	1						
1	1	-1	1	1	n		1	0.5	1	0.5
-1	-1	-1	-1	-1				010		
				_						
Random Label	Model_1	Model_2	Model_3	Model_4	-					
1	1	1	1	-1	$y_3^T X_3$		Model_1	Model 2	Model 3	Model 4
1	1	1	1	1						
1	1	-1	1	1	n		1	0.5	1	0.5
-1	-1	-1	-1	-1						

For each label, the same process is used as when the Rademacher complexity is calculated.

The process of determining the label for each certain clutter is repeated many times and the average is taken.

The axis is blue in the middle, the labels are completely random.

This graph shows how much the model loses predictive accuracy for random labels as the randomness of the labels increases.

Complexity Summary

• The potential complexity of the model was evaluated by looking at the model's follow-up to random labels by Rademacher complexity.

 Our new method is a more detailed analysis of Rademacher complexity, which will lead to the discovery of a simpler model by referring to the graph.

"Hello, New Learning!" Current User Interface

New Interface with Our Algorithms

Back-End

Python Flask

Front-End

React JS

el ciant		ap b sich		2.500	chan	manana	new C	No.1 South Control State States State States States States States
	10							
-	fiete	Wage	frequent	Bet	-	farmer	Ins	
Anton	ы.	1212	*	too ax	*	-	le.	
Analoge	14	Dan Alt	-	Dan are	÷.	-	-	The limited for one splitted to down him and will be used to inside particular solution which will give weight to be different formul contractions. Scale to be 3 to common and which will give weight to be different formula contractions. Scale to be 3 to common and which will give be present.
844 (100	Doo nit lam		toor set		-	14.	
-	12	State and beam	20	Days Sec	2	20	-	•
Nine -	16	50 11	*	Dara	*	*	*	
ο.	W.	Dans and Dans	1	0.0		94 I	-	

	a second s			
Des.	Rep 2 for increases Rep 3 Lawred Western Rep 6 for of French Market	Annes Annes	Astrony Preserve	10000000
- Committee	Intering generation of possible contributions of variables. The contributions in a based of the intervalues of a contribution in managed by the implicit the g-based that have been contribution of limitsees. The table below will only down maked that and regardless there must main	its ranks are the start represen- te-contribution and the scientist	or condition of features of protive and manifestory	comment for the named of D
	Contribution of Despectator Incise	fundantia tanja	these managed POPS	Occurrences of NDE
	Then extract Weight and "the Boulow map loop" and $\mathrm{Tagrov}(J^*)$	9		£
	"Doe not not Hope' and "Ro Spine' and "In Broken using Supp"	36 - C	(a).	1
	"Rot hold" set "for Booting ongo"	t	- 11	0
	"No Departm"	Ŭ.		10
	The fail for	1	-)0	45
	"Door out flow" and "No Doubles using long".	1		a
	"Des un have Ways" and "Dets un name Paul" and "Legisch (*	¥.		8
	"Does tok have Nange" and "The Spile" and "Does spitchers Files"	4	-11	¥

Maine Date:	-	-	-E	Sec. 19	a second
	100	6.80	Take .	Report Nexts Machine	Atalatan B
Report Vices Harmon	141	10			
Rantes Friest	.04	104			
Decision There (along the D	100	0.00	Environ Territory	Description (Free schere)	Desired at 1
Territor Tec pages + 11	1.00	10			1525-01
Decision Free Maple e Di-	101	8.35	-		-
Denses The jägely i 10		1.00	Tables Inc.	1000 1	- brown
Legite Pagement	0.00	425	2570.00600000		
Pression in the local data	-086	0.00			
George Metal Bases	101	414			

p 1 cycled Townson, Hop 2 coc mapsels Designments Designments	a Bug S Latered Weights Bright Set of Faceling Step 3 Sets (See Step 1 Medite Sets)	A TANK CO	eth Fine Mag 1 Union Theme Steph Restaurus I Innis Data Bac Royal Multi
The safe show the weight from Lane. The serger weight from the feature conten- tion for any series of the feature content of a poly- tree index from the final works. (Note that from the final works).	Lucio cicilit One provinte la Notice calculate la respla of 0, which		
	Parase Communities	444	A light between the
	"Decise here Wage" and "Verification array to py" and "Lagord 2".	19	ino-marfeiture
	"Share for been it rep? and "Has Spec" and "Has been using beings"	-244	
	"he Populat	Ċ¥.	
	The Ballion	10	
	The at the Way at the late of the late and the body and the		
		10	
	"Note that have Weige" and "Havildo rated" and "Havildo using large"	141 935	

Des		Denter	inter a	14 7. 144	-	map 4. Sel	d Reel/s	Sup Control Day User, Start & Wester with Ever Instance Detected Damages					
Name	Rector	-	-	file	Aqual	Tan same	3						
view	Noriet Arte	64	34	700	ж.	74	23.2						
niani.	Terr mp data	Den Mil Mil	*	1000 10	**	· 10-	8.4	The series and see spherical is shown from and within and is general and does not from the potential models many to Stop-4. So iff is shown to concern particle to Stop-4 locks to research.					
-	Presi nel Marte	×	N.	Dest Tel	76	104	121						
nages.	5	las as Jac	2	Ante ST	2	.	Duit Su Sus						
No.	Days and Mark	Theo at	19	Des at	*		Dest an						

					Interferrer	
hip 1. Carlow Theorem	upto - Map & Sol of Par Moder	ene het	Nación O Pener	A Dard Wester with Date of Street Property lines	Ren Courtere	New B. Washington, And And Washing Markow
Searchede an Reparation	anne granted to the flag	pert fechie in	white cost			
	i nina	Profession	544.5			
	Faller	(F)	854			
	Sulpton	(a)	88			
	Property	9	834			
	Capper	90	138			
	Mark.		844			

Conclusion

- Our version of Wide Learning considers many different models while making predictions
- The user can decide which model they prefer based on accuracy and complexity
- The user also has the option to select important feature combinations for the Lasso model
- The new user interface incorporates additional explanations to address feedback from the pilot survey
- A new survey has been sent out to evaluate the new workflow and interface we developed

Thank You!